Cloning and expression of a DAX1 homologue in the chicken embryo

in Journal of Molecular Endocrinology

DAX1 is an unusual member of the orphan nuclear receptor family of transcription factors. Mutations in human DAX1 cause X-linked adrenal hypoplasia congenita, while abnormal duplication of the gene is responsible for male-to-female dosage-sensitive sex reversal. Based on these and other observations, DAX1 is thought to play a role in adrenal and gonadal development in mammals. As DAX1 has not previously been described in any other vertebrate, a putative avian DAX1 clone was isolated from an embryonic chicken (Gallus domesticus) urogenital ridge cDNA library. The expression profile of this cDNA was then examined during gonadogenesis. The clone included the conserved 3' ligand-binding motif identified in humans and mice but the 5' region lacked the repeat motif thought to specify a DNA-binding domain in mammals. Southern blot analysis and fluorescence in situ hybridisation mapping showed that the gene is autosomal, located on chromosome 1q. Sequence comparisons showed that the putative chicken DAX1 protein has 63 and 60% identity with the human and mouse proteins respectively over the region of the conserved ligand-binding domain. However, stronger identity (74%) exists with a putative alligator DAX1 sequence over the same region. Northern blotting detected a single 1.4 kb transcript in late embryonic chicken gonads, while RNase protection assays revealed expression in the embryonic gonads of both sexes during the period of sexual differentiation. Expression increased in both sexes during gonadogenesis, but was higher in females than in males. This is the first description of a DAX1 homologue in a non-mammalian vertebrate.

If the inline PDF is not rendering correctly, you can download the PDF file here.

 

      Society for Endocrinology

Related Articles

Article Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 212 212 4
PDF Downloads 47 47 4

Altmetrics

Cited By

PubMed

Google Scholar