Expression of GLUT2 in insulin-secreting AtT20 pituitary cells

in Journal of Molecular Endocrinology
Authors:
EL Davies
Search for other papers by EL Davies in
Current site
Google Scholar
PubMed
Close
,
KI Shennan
Search for other papers by KI Shennan in
Current site
Google Scholar
PubMed
Close
,
K Docherty
Search for other papers by K Docherty in
Current site
Google Scholar
PubMed
Close
, and
CJ Bailey
Search for other papers by CJ Bailey in
Current site
Google Scholar
PubMed
Close
Free access

Sign up for journal news

The importance of the glucose transporter isoform, GLUT2, in the construction of glucose-sensitive surrogate insulin-secreting cells was evaluated using murine pituitary AtT20 cells. The cells were double transfected with cDNAs for human preproinsulin (hppI-1) driven by the cytomegalovirus promoter, and human GLUT2 driven by the beta-actin promoter. The stably transfected clone, AtTinsGLUT2.36, which strongly expressed both the hppI-1 and GLUT2 genes, constitutively released 7.5 ng/10(6) cells/24 h of immunoreactive insulin-like material, 75% of which was fully processed mature human insulin. Increasing glucose concentrations in the subphysiological range up to 50 microM increased insulin release, but greater glucose concentrations did not further increase insulin release. Suppression of the low-K(m) glucose-phosphorylating enzyme, hexokinase, with 2-deoxy-D-glucose increased glucose-stimulated insulin release by two- to threefold in the presence of subphysiological and physiological glucose concentrations up to 10 mM. Physiological glucose concentrations increased the amount of GLUT2 mRNA, indicating that the beta-actin promoter responds in a glucose-dependent manner. Implantation of 2 x 10(7) AtTinsGLUT2.36 cells intraperitoneally into streptozotocin-diabetic nude mice slowed the progression of hyperglycaemia. The implanted cells formed vascularised tumour-like cell aggregates attached to the peritoneum. The results demonstrate that the beta-actin promoter is partially regulated by glucose. Expression of GLUT2 enables glucose to enter the cell at high K(m), but high-K(m) glucose phosphorylation is also required to signal glucose-stimulated genes affecting insulin release.

 

  • Collapse
  • Expand