Diazepam-binding inhibitor (DBI) was initially isolated from the rat brain as a result of its ability to compete with benzodiazepines for their receptors. Immunohistochemical studies have recently shown the presence of peripheral-type benzodiazepine receptor (PBR)- and DBI-like immunoreactivity in the frog adrenal gland. The aim of the present study was to investigate the effect of two biologically active DBI-derived peptides, the triakontatetraneuropeptide [TTN; DBI(17-50)] and the octadecaneuropeptide [ODN; DBI(33-50)], on corticosteroid secretion by frog adrenocortical cells. Exposure of frog adrenal explants to graded concentrations of TTN (3.16 x 10(-8) to 3.16 x 10(-6) M) induced a dose-related increase in corticosterone and aldosterone secretion. In contrast, ODN did not modify corticosteroid output. When repeated pulses of TTN (10(-6) M) were administered at 2-h intervals, the response of the adrenal explants to the second dose of TTN was markedly reduced, suggesting the existence of a desensitization phenomenon. Exposure of dispersed adrenal cells to TTN also induced a marked stimulation of corticosteroid secretion, indicating that TTN acts directly on adrenocortical cells. The central-type benzodiazepine receptor (CBR) agonist, clonazepam, did not stimulate corticosteroid secretion and the CBR antagonist, flumazenil, did not block the stimulatory action of TTN. Similarly, the PBR agonist, Ro5-4864, did not mimic the stimulatory effect of TTN and the PBR antagonist, flunitrazepam, did not affect the stimulatory action of TTN. The present study provides the first evidence for a stimulatory effect of TTN on intact adrenocortical cells. The receptor mediating the corticotropic action of TTN is not related to central- or peripheral-type benzodiazepine receptors. Our data suggest that TTN, released by chromaffin cells, may act as a paracrine factor regulating the activity of adrenocortical cells.
Journal of Molecular Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 309 | 133 | 0 |
PDF Downloads | 201 | 53 | 0 |