Figure S7. Detailed phylogenetic tree of cis-isoprene transferases and nuclear receptors

Primary sequences of the ligand-binding domains of 'early' nuclear receptors were compared to a compendium of sequences for DHDPPS and its evolutionary relative, and obligate partner, NUS1/NOGOBR. Although NUS1 and NOGOBR are generally thought to be orthologous, this remains to be confirmed.

Methods. Clustal omega alignment and phylogenetic reconstructions were performed using the function 'build' of ETE3 v3.1.1 (Huerta-Cepas et al., 2016) as implemented on the GenomeNet website at the University of Kyoto (https://www.genome.jp/tools/ete/). The tree was inferred using RAxML v8.1.20 run with model PROTGAMMAJTT and default parameters (Stamatakis, 2014); branch supports were computed from 100 bootstrapped trees (Figure S7, below).

Conclusions. The rooted tree, as computed, depicts NRs as being a branch of the DHDPPS/NOGOBR/NUS1 group of cis-isoprene transferases. Some programs give slightly different results, placing NRs most closely to NUS1, whereas this tree splits DHDPPS/NUS1/NOGOBR into subgroups. However, all such trees highlight the close relationship,
based on protein primary structure, between NRs and this specific subgroup of cis-isoprene transferases. It is notable that the inferred evolutionary distance between NRs and the cis-isoprene transferases is comparable to the inferred distance between the different members of the cis-isoprene transferase subgroup.

References
