Supplementary method

RNA extraction, and qRT-PCR

Total RNA from the isolated islet cells or cultured Min6 cells was extracted using the TRIzol reagent (Invitrogen, America) according to the manufacturer’s protocol. cDNA was synthesized using the RT reagent kit (TaKaRa, Japan). The circRNA and mRNA levels were determined by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) using TB Green (TaKaRa). The relative expression levels of the selected genes were normalized to β-actin mRNA levels. The quantification of microRNA expression was performed with a stern-loop real-time PCR miRNA kit (Ribobio, China). U6 was chosen as an internal control. All qRT-PCR assays were carried out on the LightCycler 480 II real-time PCR detection system (Roche). All primers used in this study were designed using Primer premier software (6.0) and listed in Supplementary Table 1.

Verification of circularity by RNase R treatment

The total RNA was treated with RNase R (Geneseed, China) or RNase-free water (control), and digested RNA was used for confirmation.

RNA FISH

The circ-Tulp4 probes (Cy3-labeled) were designed and synthesized by Geneseed. The sequences of the probes were specific for covering the junction site of the circ-Tulp4 (sequences: gttgacatgtatcatctg). The in situ protocol was performed according to the instructions. 4',6-diamidino-2-phenylindole (DAPI) solution was used to detect nuclei. Images were acquired using the TCS SP2 AOBS confocal microscope system.
MTS assay

The Cell Titer 96 AQueous One Solution Cell Proliferation Assay System (MTS; Promega, America) was applied to detect cell survival according to the manufacturer’s protocols. The absorbance at 490nm was measured using a microplate reader (Bio-Rad, America).

EdU assay

The cell proliferation rate was detected using EdU (5-ethyl-2'-deoxyuridine) DNA Cell Proliferation Kit (Ribobio) according to the manufacturer’s protocol. Hoechst 33342 was used to detect nuclei. Images were acquired using the inverted fluorescence microscope system (Olympus, Japan) and analyzed using Image-Pro Plus 6.0 software. For accurate assessment of the cell proliferation rate, the number of EdU-positive cells was also measured using a Beckman CytoFLEX cytometry system (Beckman).

Luciferase assay

The luciferase reporter was constructed by subcloning the circ-Tulp4 region containing predicted microRNA binding sites or soat1 3’ untranslated region (3’-UTR) fragment directly downstream of the reporter gene Renilla luciferase into the psiCHECK2 luciferase vectors. Luciferase activity was determined using the Dual-Luciferase Reporter Assay Kit (Beyotime, China) following the manufacturer’s protocol.

Apoptosis assay

The number of apoptotic cells was evaluated by using the Annexin V-FITC/PI apoptosis assay kit.
(Lianke Biotech, China) according to the manufacturer’s protocol. TUNEL staining was performed using the One step TUNEL apoptosis assay kit (Beyotime Biotech, China) according to the manufacturer’s protocol. The rate of apoptosis was analyzed by ImageJ software.

Cell cycle analysis

The cell cycle was detected by propidium iodide (Invitrogen) staining according to the manufacturer’s protocol. The percentage of cells was counted using a Beckman CytoFLEX cytometry system (Beckman).

Metabolic measurements

Bodyweight and food intake (g/day/body weight) were monitored periodically. Blood was taken from the tail vein to measure blood glucose using Accu-Chek Glucometer (Roche). **Overnight fasting** glucose of mice on a high-fat diet (HFD) above 10mmol/L were considered diabetic and used for experiments. Glucose tolerance tests were performed by an intraperitoneal injection of 2 g/kg glucose after overnight fasting.

Immunofluorescence

Freshly isolated islets were fixed and labeled with anti-insulin antibody (cat#3014 Cell Signaling Technology) to determine the cell type of isolated cells via the immunofluorescence method.

Measurement of cholesterol ester in Min6 cells

Min6 cells were overexpressed with circ-Tulp4 or soat1 for 48 h and then followed by PA treatment for 24 h. Cholesterol ester was evaluated using a cholesterol assay kit (BioVision, Milpitas, CA).
Supplementary figure legends

Supplementary Fig. 1

Determination of body weight, blood glucose, food intake and glucose tolerance in db/db mice and db/m mice (A-D), or in C57BL/6J mice on a normal control or high-fat diet (F-H). Bodyweight (A), food intake (g/day/body weight) (B), and random blood glucose measured using a glucometer (Roche) from 6 to 9 weeks of age (n≥10 in A and C, n=5 in B). D Intraperitoneal glucose tolerance testing at 10 weeks of age. The mice were fasted overnight, and the blood glucose levels were monitored in response to 2 g/kg glucose (n=5). Blood glucose levels at all time points were comparatively high in db/db mice versus db/m mice. Data represent mean ± standard error of the mean. ***, P < 0.001 versus db/m mice. E Representative images of freshly isolated mice islets and insulin staining images. Insulin immunofluorescence assay was performed to confirm that the cells used for RNA-seq were acinar-free islets. The results indicated that isolated cells were mostly stained positive. Plots of body weight (F) and fasting blood glucose (G) of C57BL/6J mice over time (n≥10). A plot of time-dependent glucose tolerance curves in 37-week old C57BL/6J mice on a normal control (NFD) or high-fat diet (HFD) (n≥10). Blood glucose levels at all time points were comparatively high in HFD mice versus NFD mice. ***, P < 0.001 versus C57BL/6J mice on a NFD.

Supplementary Fig. 2

Min6 cells were transfected with circ-Tulp4 siRNAs for 24 h (A and C) or 48 h (B), followed by PA (0.5mM) (C) or solvent (BSA) treatment for 24 h (A and B). Cell proliferation ability was detected by MTS under basal condition or lipotoxic condition. To examine cell proliferation under basal condition,
EdU assay (D and E) or western blot (F) was performed. Insulin biosynthesis (G-H) and apoptosis (I-L) were not affected by the silencing of circ-Tulp4. The protein expression level of cleaved caspase-3 was analyzed by Western blot under lipotoxic condition. (I and J). Min6 cells stained with Annexin V and propidium iodide (PI) were analyzed by flow cytometry for cell apoptosis assessment under basal (K) or lipotoxic (L) condition. *, $P < 0.05$ versus indicated groups.

Supplementary Fig. 3

To assess cell apoptosis, Min6 cells stained with Annexin V and propidium iodide (PI) were analyzed by flow cytometry (A-B). Expression of insulin1 mRNA (ins1) or insulin2 mRNA (ins2) was analyzed by qRT-PCR under lipotoxic condition after upregulating circ-Tulp4 (C) or soat1 (D) expression. Cell survival was examined by MTS in the siRNA-soat1 transfected cells (E) or Soat1 vector-infected cells (F) under basal condition. MiR-298-5p, miR-3113-3p, and miR-7222-3p demonstrated a potentially relevant role in regulating the expression of soat1, and verification of these microRNAs expressions in Min6 cells was shown (G). MiR-3113-5p served as a control. Expression level of soat1 in Min6 cells treated with either miR-298-5p mimic or co-treated with miR-298-5p mimic and circ-Tulp4 vector (H). Expression level of soat1 in Min6 cells treated with either miR-3113-3p mimic or co-treated with miR-3113-3p mimic and circ-Tulp4 vector (I). NS, Non-significance of difference. *, $P < 0.05$; **, $P < 0.01$ versus the indicated groups.

Supplementary Fig. 4

Min6 cells were transfected with miR-7222-3p mimic, or co-treated with circ-Tulp4 vector (A) or Soat1 vector (B) for 48 h, followed by BSA treatment for 24 h. Cell proliferation ability was detected
by MTS. Min6 cells were transfected with miR-7222-3p mimic, or co-treated with circ-Tulp4 vector for 48 h (C); or transfected with siRNA-1 or siRNA-2 for circ-Tulp4, or co-treated with Soat1 vector for 48 h (D); or transfected with siRNA-1 or siRNA-2 for soat1 for 48 h (E), followed by BSA treatment for 24 h. Western blot assays were used to analyze the protein expression level of ki67. The expression level of cyclin D1 mRNA (F and G) or protein (H) in Min6 cells infected with circ-Tulp4 or Soat1 vector was analyzed. For apoptosis assessment, TUNEL staining was performed and TUNEL positive Min6 cells with indicated treatment were counted (I). Scale bar = 50 μm. Non-significant differences were observed in the above groups.
Supplementary Table 1 primers used for qRT-PCR in this study.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>mRNA</td>
<td>F:</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>circ-Tulp4</td>
<td>AATAAACCTTCAACCTGCGAGGC</td>
</tr>
<tr>
<td>tulp4 mRNA</td>
<td>AATAAACCTTCAACCTGCGAGGC</td>
</tr>
<tr>
<td>soat1 mRNA</td>
<td>TCGCACTCCTCACCCTCATCTAT</td>
</tr>
<tr>
<td>cyclin D1 mRNA</td>
<td>GGAGCAGAAGTGCGAAGA</td>
</tr>
<tr>
<td>β-actin mRNA</td>
<td>GACGGCCAGGTCATCAGTATTG</td>
</tr>
</tbody>
</table>
R: CCACAGGATCCATAACCAAGA
Supplementary Table 2 detailed information of the differentially expressed circRNAs with a fold change over 1.5.

<table>
<thead>
<tr>
<th>AccID</th>
<th>Chrom</th>
<th>start</th>
<th>end</th>
<th>strand</th>
<th>Gene Name</th>
<th>log²(fold change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome</td>
<td>Start</td>
<td>End</td>
<td>Direction</td>
<td>Gene</td>
<td>Start</td>
<td>End</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>-----</td>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>chr6</td>
<td>28526052</td>
<td>28545598</td>
<td>+</td>
<td>Snd1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr4</td>
<td>138221525</td>
<td>138241792</td>
<td>+</td>
<td>Hp1bp3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr18</td>
<td>75080202</td>
<td>75082507</td>
<td>+</td>
<td>Dym</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr4</td>
<td>108717788</td>
<td>108719812</td>
<td>-</td>
<td>Zfyve9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr15</td>
<td>72999971</td>
<td>73031643</td>
<td>-</td>
<td>Trappc9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr9</td>
<td>83988775</td>
<td>84012619</td>
<td>+</td>
<td>Bckdhb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr15</td>
<td>95864224</td>
<td>95920378</td>
<td>+</td>
<td>Ano6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr1</td>
<td>38053615</td>
<td>38085652</td>
<td>-</td>
<td>Rev1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr17</td>
<td>6137210</td>
<td>6139156</td>
<td>+</td>
<td>Tulp4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr18</td>
<td>6111684</td>
<td>6115850</td>
<td>-</td>
<td>Arhgap12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr1</td>
<td>87364103</td>
<td>87380008</td>
<td>+</td>
<td>Gigyf2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr16</td>
<td>94383911</td>
<td>94403368</td>
<td>+</td>
<td>Ttc3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

chr6_28545598_28526053_+19545-Snd1
chr4_138241792_138221526_+20266-Hp1bp3
chr18_75082507_75080203_+2304-Dym
chr4_108719812_108717789_-2023-Zfyve9
chr15_73031643_72999972_-31671-Trappc9
chr9_84012619_83988776_+23843-Bckdhb
chr15_95920378_95864225_+56153-Ano6
chr1_38085652_38053616_-32036-Rev1
chr17_6139156_6137211_+1945-Tulp4
chr18_6115850_6111685_-4165-Arhgap12
chr1_87380008_87364104_+15904-Gigyf2
chr16_94403368_94383912_+19456-Ttc3
Sequence of mouse circ-Tulp4

```
5  ‘-AGTTGTAAGAGTCCATCCAGGACCTCCAGTCATGAATAATCTGATGGCTCTGTAATTAA

CCGGGAAAAACAAACCATATCAAGTGCCATTGAAAGACTCTGTCTATCTATGTAAATACCTTT

TCTGCACATAGAAGCTTTCCTTCAAGAAAGACATTCTGAATTTTGCAACTGATGAAGATTA

AGCATCAGCTGGGACGACCTTTCCACTGTGGGTGGGTGGGAGTGCTGTGGAGAACAGTCTGTC

ACTAAATGCAGATTTTCTTACAGTGTTCATAAACAACCCAGTTTGCAAAAAAGAAAAAA

TTGCACTAGTTAACCCTAAAGAATAGCTCCAGTGAAGCAGGGGAGCCAGACCTTAAAAACTC
```
TGAACCGGAGCTCAGTGACTTTTTCTCTGTTGGTTAGCAGGAGTGAGGGGACTGA TCTGAA
AGGAACAGACATTCTTTTGTCTTCAGCTACTCGGAAGTTTTTTAATTATGTGTATCTTTT
TTCTTTTCTGCATATAATAGCCATTTTAAAATACTAATTGGAACTGTCAGTTACAAAATA
AATATCAAGAAAGCCTTTTTTGTCAAAAGGGTGTGAAACAGGCTTGCAGGGAACAGGAA
GACATCTTTTGGAAGCTTTGACGCCGTTCTTGGAGAGATGGTGCACTTTGGAGGGCTCTGCT
ACACGCCTAGGTTGCTGGTTAAAAAGCCTTGCATCGACAGGAGACTAAATTAAGACAC
AGTTCTAAGATTGCTTTTTGCATTACATAGAAAACTAGAGAAAGGAGAAACAGAAGCCTGC
AGCCTAGTCTGTGAAGCAAGATAGGCCAAACTCAGGAAAACCTACTTGGGCCATTAG
ATAGCAGTTTATTCATACCTAGTGACCGCAGGCCCTCCACCTCTGTGAGGAGGGCT
TTGCTCCAGTCTCTGTGCGACTGGGTTGTTCCAGCCCATGGGAGGAGTCATTCTAGGAA
GCCCTGTGTTCTAGGGACACAGGGCCAGGCTTTTGAGACAGGAGCTTCTGGCTGTGAGC

AGTGGGGGAAAGAGTGATTTTCTTTGTTAAAGCTTTGACCATTGTCTGCATGAGCTCTTGGT

GTGACTTTGCACGTAGTGTCCTTTCTCCCTTATGCAACCTTTTCCAGCTTACAGCAAGAA

ACTTGCCGAGTTTCAGAAAACGTGCCAGAGGGTGCTTCAGAGGGAAGATGATCTTTTGTG

ATCAGTCTCTGCACTTTGAACATTAGAGAAATCCAGCTACAGGAATTCTTTACGCC

TTAAGTTACTTGAATCTATGTGTTTGTACCCCTTTTGTCTCTGGAATTACATTACAAAA

AAACTGGAATTCAGCGGCTGAAATAACGAGGCTGAGTAAAGCGAAGAACTGCCTCTT

CATCATCAGTTACTAAACAGCTCTTCTCCCAAAGGAATTGGGTGTTTCCCCTAAGAACT

TGAAAAATGAGAACGGACCGGACCCTGTTGTATTTTTAGGCAATTACCTTTCTCTCGCGACTGACGTC

TTTTATAGAGGGAGTTTTTTTCTATGCTATTGGTGAGCTTTATAAGCTATTGCCTAAAT
TGGACTCTAGATCAGTTGAACCTAAAGGAGAAAAAAAACCAACCGAACCCCACA
AAAATAAGCCAATAAAAGAACTTGTTGTTGAAATCTCAGTACCTTTAAAAGTGAATACT
TCATTGAAAAAGTATGTATGCAGCAGTGGAACACTGGGCCGTGGCTTTTGCAAGCGATTCCA
ACATCCTCTGCTGTCTGGAAGGGCGTGCTCCCAAAGAGTGAGAAGGAGAAACCTGTGT
GCAGAAGGCCGCTACTATGAAGAGGGATGTGGCCACAGGCAATGGGCGAGGTGTTGG
GAGTGACCTTCACCTCGAGTCACTGTCGCAGAGA TAGGAGTACACCACAGAA-3‘
TCAACCTGCAGGCCAACAAGTGAG

Sequence of relevant human circ-Tulp4

5’-ATTGTAAAGACTCCAGGCCCTCCAGCCGATGTTCTGAAATGACTGGGAAAGCAGACGTCTCTGTATG
GCAGTTGAAGATGTGTGTCTATGTGCATTTAAAACCTTCTTCTGCTACTCACATTCACACGGGAAGACAGGCTATT
AAGATCTTTAGGAGCAAGAAGGGAGTGCTAATGTGGGAGCGAGAAGGGAGACGAGCAAAAGAAACAAAATCTTGCCA
CGTGGGCTCTGTGGTGCAGCAAGAGGAATTTAAGACTCACCAGGGGAAGCTGGAACCTGGGGTGGCGCTGGTAGAGTCCTGGGAACAT
TCTGCTCTGGTGAAGGGGCGCTTTCTCTAGCGCTCTATGGGCTAGGGGCTGGCAGCTGGGTGGTAGGGATGCTGCCCG
TGGAGGCTGCCCGGACACAGGGCCAGGCGAAGCTTAGGGAAAGGTTTGCTGGTCTGAGAACAAACAGAGGAGAGAGT
CTGTTTTTTCTCTACTAGCTGTCTGACAAACTCGTTCTGACGTGTTTGGCAGGCGGTGTGCTGCTCTTTCTCC
TTATGCAAATCTTTTTAGCAGCAGAAATTTTTTGCTAGTTCAAGGAAACAGCTAGAGGGTGGCTTCAGAAGGAAG
ATGATCTCTGTTCTCTTCTCTCAGCAACCTTTTTGAGAAGAAATTGCGAGCTAGAGGGAATTCGCTTAAAGCTTAAGT
TACTTGGAAATCTATGTTTTGCAACCCCTTTGTCTCTGGAATCATATTACATCAAACCTGGAAATCTCGGCTGAATGAGAT
AACCAAGTGGAAGTAAAAGAAAAGAAAAACCCTTTCTTGAGCTGCAACACCTTATTAACGATGCTTTCTCTCCAAGGATCAGC
AAGAGTAGGACATTTGAAAAATACAAATGGACCCCAATGTGTTTTTTAGCATTACCTTTTTCTTGAAGAGACTGCCATCA
TCTTTTATAGAGGAATTTTTTCACTATGCAATTCGTTGGATTTTATATAATACTGACCTTCTAATTAGATTCAGGTCAGT

CTTAATTTAAGGGGAAAAAGCAACGCAAGCCAACCACAAAAAACACATATACCAATGAAAAGAAATTGTTTAAATTCA

CAGCATTACATTACTTTTTAAAGTAAAAACGTTCTTAGGAAGAAAGTATGATGACGACATGGAACATGGGCTGTGCCTT

GCAGCGATTCCAACATCTGTGGCTCTGGGAGGGGCGGTCTCCCCAAGAGTGAGAAGGAGAAGCGCTGTGACCTT

CGCTACTATGAGGAAGGCTGGCTGGCCACGGCAGGAGTGGTGGGATGACTTTCACCTCTACTCTGTCG

CAGGGACAGGAGTACTCCACAAGGATAAATTTCAACCTCCGGGCCCACAATAGCGAG-3'

Cross-species comparison is shown in another PDF supplementary material using the MUSCLE tool (https://www.ebi.ac.uk/Tools/msa/muscle/). *, conserved nucleotides.