Search Results

You are looking at 1 - 10 of 57 items for :

  • 9-cis-retinoic acid x
  • Refine by Access: All content x
Clear All
Restricted access

Y-J Y Wan, T Pan, L Wang, J Locker, and T-C J Wu

ABSTRACT

In McA-RH 8994 rat hepatoma cells, all-transretinoic acid (t-RA) induces expression of the α-fetoprotein (AFP) and albumin genes and results in a phenotype similar to differentiated fetal hepatocytes. The present study elucidated the mechanism involved in AFP gene regulation mediated by retinoic acid. Northern blot analyses demonstrated that 9-cis-retinoic acid (c-RA), a ligand for retinoid x receptors (RXRs), also induced expression of the AFP gene in McA-RH 8994 cells. The induction was time- and dose-dependent. Northern blots and transfection assays using the 7·3 kb full-length regulatory region of the AFP gene demonstrated that c-RA was more effective than t-RA in regulating expression of the AFP gene. At 10−7 m, c-RA increased AFP mRNA 5-fold and chloramphenicol acetyltransferase (CAT) activity 2·5-fold. In contrast, t-RA at a concentration of 10−7 m exerted no significant effect; 10− 6 to 10−5 m t-RA was needed to affect AFP gene expression. These data suggested that activation of RXRs is essential for the regulation of the AFP gene. Co-transfection experiments revealed that overexpression of RXRα in McA-RH 8994 cells further enhanced the CAT activity induced by c-RA. In addition, c-RA did not alter the half-life of AFP mRNA. Thus, RXRα may play a crucial role in transcriptional regulation of the AFP gene and in controlling hepatocyte phenotype.

Restricted access

S Y James, A G Mackay, and K W Colston

ABSTRACT

The effects of the novel vitamin D analogue, EB1089 alone, or in combination with the retinoid, 9-cis retinoic acid (9-cis RA) on indices of apoptosis in MCF-7 breast cancer cells have been examined. EB1089 was capable of reducing bcl-2 protein, a suppressor of apoptosis, and increasing p53 protein levels in MCF-7 cell cultures following 96h treatment. In the presence of 9-cis RA, EB1089 acted to further enhance the down-regulation and up-regulation of bcl-2 and p53 respectively.

Furthermore, EB1089 induces DNA fragmentation in MCF-7 cells, a key feature of apoptosis, alone and in combination with 9-cis RA in situ. The observation that EB1089 and 9-cis RA act in a cooperative manner to enhance induction of apoptosis in these cells may have therapeutic implications.

Free access

K Maehara, T Hida, Y Abe, A Koga, K Ota, and E Kutoh

We undertook a study of molecular interference of nuclear orphan receptors. Nuclear receptor response element-1 (NRRE-1) from the human medium-chain acyl coenzyme A dehydrogenase (MCAD) gene promoter was shown to contain three hexamer elements (site 1 through 3) that are known to interact with a number of nuclear receptors including chicken ovalbumin upstream promoter transcription factor (COUP-TF) and estrogen-related receptor alpha (ERRalpha). We demonstrated that the peroxisome proliferator-activated receptor alpha/9-cis-retinoic acid receptor alpha (PPARalpha/RXRalpha) heterodimer complex can also bind to the two hexamer repeat sequences (between site 1 and site 3) arranged as an everted imperfect repeat separated by 14 bp (ER14). Mutations of the putative core elements have shown that these three sites are differentially involved in ERRalpha and PPARalpha/RXRalpha binding. Homodimer of ERRalpha was shown to interact between site 1 and site 3 (ER14). To date, no nuclear receptor is known to bind to response elements over such long intervals. Interestingly, site 1 was shown to be essential for ERRalpha binding while site 3 supports its binding only in the presence of site 1. Furthermore, it was shown that the binding profile of ERRalpha and PPARalpha/RXRalpha are competitive rather than making a high order complex within NRRE-1. At the cellular level, transcriptional activation driven by the PPARalpha/RXRalpha complex was counteracted by the expression of ERRalpha in HeLa cells. These results suggest that ERRalpha and PPARalpha/RXRalpha could interfere with each other's function through binding to similar DNA elements, thereby finetuning the transcriptional outcome of the target gene. Our findings suggest a mechanism whereby multiple nuclear receptors can activate or repress DNA binding or transcription via a single pleiotropic regulatory element.

Free access

D Bouton, H Escriva, R L de Mendonça, C Glineur, B Bertin, C Noël, M Robinson-Rechavi, A de Groot, J Cornette, V Laudet, and R J Pierce

, Euromedex, Mundolsheim, France) under the conditions recommended by the supplier. The pTL1 plasmid was used as a carrier when necessary. Ligands (ethanol solution of 9 -cis retinoic acid 10 mM; ethanol solution of cis -4,7,10,13,16,19-docosahexanoic acid

Free access

A Pestka, B Toth, C Kuhn, S Hofmann, I Wiest, G Wypior, K Friese, and U Jeschke

vitamin A derivatives, so-called retinoids ( Singh et al . 2006 ). Retinoids are initially taken with food and via oxidation processes they are converted into retinoic acid, of which different isoforms such as 9- cis -retinoic acid (9- cis RA), 13- cis RA

Free access

Jan Wilde, Maria Erdmann, Michael Mertens, Gabriele Eiselt, and Martin Schmidt

aromatase expression in breast adipose fibroblasts (BAFs). In this study, we show that ligands of the retinoic acid receptors (RARs), all- trans -RA (at-RA) and 9- cis -RA (9 cis -RA), induce aromatase activity in human BAFs via a retinoic acid response

Free access

Maciej Pietrzak and Monika Puzianowska-Kuznicka

, Onate et al . 1995 , McKenna et al . 1999 , Weiss & Ramos 2004 ), and with other proteins such as 9- cis -retinoic acid receptors (RXRs) ( Rastinjead 2001 , Szanto et al . 2004 ). The non-genomic mode of action of T 3 is more complex and, in some

Free access

KW Colston, CM Perks, SP Xie, and JM Holly

The effects of two vitamin D analogues, EB1089 and CB1093, on insulin-like growth factor binding protein (IGFBP) expression have been examined in MCF-7 and Hs578T human breast cancer cell lines. Both vitamin D analogues inhibited IGF-1 stimulated growth of MCF-7 cells and enhanced the production of IGFBP-3 as determined by Western-ligand blotting. Recombinant human IGFBP-3 inhibited the growth of MCF-7 cells over the concentration range 1-235 ng/ml. Hs578T cells were unresponsive to the mitogenic effects of IGF-1 but growth was inhibited by the two vitamin D analogues. Treatment of Hs578T cells with EB1089 and CB1093 (10 nM) as well as 100 nM 9-cis retinoic acid (9-cis RA) or all-trans retinoic acid (ATRA) was associated with increased accumulation of IGFBP-3 in conditioned medium. Furthermore, cotreatment of Hs578T cells with EB1089 and 9-cis RA led to augmented effects on both inhibition of cell growth and IGFBP-3 accumulation in conditioned medium as assessed by Western ligand blotting and radioimmunoassay. These findings suggest a role for IGFBP-3 in the growth inhibitory effects of vitamin D analogues.

Free access

PD Thompson, LS Remus, JC Hsieh, PW Jurutka, GK Whitfield, MA Galligan, C Encinas Dominguez, CA Haussler, and MR Haussler

The vitamin D receptor (VDR) stimulates transcription as a 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3))-activated heterodimer with retinoid X receptor (RXR). RXR also forms homodimers to mediate 9-cis retinoic acid (9-cis RA)-induced gene expression. Both receptors possess a C-terminal hormone-dependent activation function-2 (AF-2), a highly conserved region that binds coactivators to transduce the transcriptional signal. By replacing single amino acids within the AF-2 of human RXR alpha (hRXR alpha) or mouse RXR beta (mRXR beta), the contribution of these residues to transactivation by the RXR-VDR heterodimer and the RXR-RXR homodimer was evaluated. In 9-cis RA-responsive homodimers, the second and fourth positions of the AF-2 (leucine and glutamate respectively) are essential. However, in the context of an RXR-VDR heterodimer activated by 1,25(OH)(2)D(3), alteration of these two RXR residues has little effect. Instead, AF-2 residues located towards the C-terminus, such as the penultimate position (L455 in hRXR alpha or L441 in mRXR beta), are crucial for RXR-VDR heterodimers. Indeed, L455A mutant RXR exerts a dominant negative effect on RXR-VDR transcriptional responsiveness to 1,25(OH)(2)D(3). Further experiments with a mutant hRXR alpha (F313A) which elicits 9-cis RA-independent transactivation as a homodimer demonstrate that, when heterodimerized with VDR, this RXR mutant is incapable of activating the RXR-VDR heterocomplex in the absence of the VDR ligand. Taken together, these results indicate that RXR is a subordinate, yet essential transcriptional partner in RXR-VDR-mediated activation of gene expression. Furthermore, a functional switch in RXR AF-2 signaling occurs between RXR residues in the homodimeric versus the heterodimeric states, likely reflecting different interactions between subregions of the AF-2 and coactivator(s).

Restricted access

I Issemann, R A Prince, J D Tugwood, and S Green

ABSTRACT

The peroxisome proliferator-activated receptor (PPAR) is a member of the steroid hormone receptor superfamily and is activated by a variety of fibrate hypolipidaemic drugs and non-genotoxic rodent hepatocarcinogens that are collectively termed peroxisome proliferators. A key marker of peroxisome proliferator action is the peroxisomal enzyme acyl CoA oxidase, which is elevated about tenfold in the livers of treated rodents. We have previously shown that a peroxisome proliferator response element (PPRE) is located 570 bp upstream of the rat peroxisomal acyl CoA oxidase gene and that PPAR binds to it. We show here that the retinoid X receptor (RXR) is required for PPAR to bind to the PPRE, and that the RXR ligand, 9-cis retinoic acid, enhances PPAR action. Retinoids may therefore modulate the action of peroxisome proliferators and PPAR may interfere with retinoid action, perhaps providing one mechanism to explain the toxicity of peroxisome proliferators. We have also shown that a variety of hypolipidaemic drugs and fatty acids can activate PPAR. This supports the suggestion that the physiological role of PPAR is to regulate fatty acid homeostasis, and provides further evidence that PPAR is the target of the fibrate class of hypolipidaemic drugs. Finally, we have demonstrated that a metabolically stabilized fatty acid is a potent PPAR activator, suggesting that fatty acids, or their acyl CoA derivatives, may be the natural ligands of PPAR.