Search Results

You are looking at 31 - 40 of 268 items for :

Clear All
Free access

AS Waller, RM Sharrard, P Berthon and NJ Maitland

In vitro models of normal and malignant human prostate are currently limited to a few well established cell lines that, with a single exception (LNCaP), fail to express the androgen receptor (AR) - a common characteristic of prostatic epithelium grown in culture. To investigate the molecular mechanism of action of the non-steroidal antiandrogen Casodex (bicalutamide) against wild-type AR, we have established a transient AR expression model in non-tumorigenic prostate cells of both epithelial and mesenchymal origin. In this model, both dihydrotestosterone and Casodex can effectively transport the AR protein into the nucleus of prostate cells. Whereas the natural ligand, dihydrotestosterone, stabilises the receptor, the AR is rapidly degraded at a nuclear location when the transfected cells are treated with Casodex. In contrast, whereas the mutant AR in the LNCaP line is also degraded on Casodex treatment over the same time period, its intracellular targeting is defective.

Free access

P Balanathan, EM Ball, H Wang, SE Harris, AN Shelling and GP Risbridger

Inhibin was first identified as a gonad-derived regulator of pituitary FSH; however, it has subsequently been shown to be a tumour suppressor in the gonad and adrenal glands. Whereas non-malignant regions of human primary prostate carcinomas express inhibin alpha-subunit (INHA), malignant tissues lack INHA transcript and protein, which is consistent with epigenetic regulation of the inhibin alpha-subunit gene (INHA) promoter. This study investigated whether methylation of the INHA promoter was responsible for inactivation of INHA transcription and translation in the prostate cancer cell lines, LNCaP, DU145 and PC3. Methylation of the promoter was revealed by bisulphite genomic sequencing and use of inhibitors of methylation and histone deacetylation resulted in reactivation of the INHA transcription and translation. Significant (P<0.05) downregulation of a luciferase reporter gene downstream from a methylated INHA promoter compared with unmethylated INHA promoter occurred in vitro. The data demonstrate that promoter methylation is associated with downregulation of the INHA gene in prostate cancer cell lines, which is consistent with its tumour suppressive role. Therefore INHA has a significant role in prostate tumorigenesis.

Restricted access

P. Davies and N. K. Rushmere

ABSTRACT

Ventral prostate glands of intact normal rats contained low levels (2500 molecules/cell) of high-affinity (dissociation constant (K d) 0·57 nmol/l) glucocorticoid receptors (GR). Levels of GR increased 2·8-fold 1 day after castration, and 4·3-fold 3 days after castration. Nuclear GR increased from a normal value of 1150 molecules/nucleus to 5200 molecules/nucleus 3 days after castration. The greater increase in intranuclear GR was in that associated with oligomeric chromatin. Although nuclear GR never approached the normal population of nuclear androgen receptors (AR; approximately 16000 molecules/nucleus), the selective rise in chromatin-associated receptors ensured that almost 60% of chromatin sites remained occupied. GR associated with prostate nuclear structures in a similar manner to AR, and exogenous GR bound saturably and with high affinity (K d 100 pmol/1) to a similar number of sites as did AR. Both steroid receptors apparently competed for the same sites. In DNA—cellulose competition analyses, synthetic oligonucleotides containing glucocorticoid response elements or putative androgen response elements competed similarly against immobilized non-specific DNA for both AR and GR. In view of these data and information from other sources, it is probable that the role of GR in the prostate should be assessed with a view to understanding its action under conditions of androgen deprivation.

Restricted access

A G Aprikian, K Han, S Chevalier, M Bazinet and J Viallet

ABSTRACT

Bombesin and gastrin-releasing peptide (GRP) are potent neuropeptides expressed by prostate cancer neuroendocrine cells and are related to the progression of this malignancy. This study characterizes bombesin receptors in human prostate cancer cell lines (PC-3, DU-145, LNCaP) and assesses the in vitro effect of bombesin on signal transduction and cell proliferation. [125I]Tyr4-bombesin binding assays (37 °C) and Scatchard analyses revealed the presence of a single class of high-affinity receptors with similar K d values (1·5, 1·1 and 3·6 × 10−10 m in PC-3, DU-145 and LNCaP cells respectively) but with significant differences in the number of binding sites per cell (47·6, 1·5 and 0·1 × 103 in PC-3, DU-145 and LNCaP cells respectively). Molecular characterization of the binding sites performed in PC-3 cells by cross-linking experiments and SDS/PAGE revealed a single radioactive band of 85 kDa. To determine which of the three known bombesin receptor subtypes (GRP receptor (GRP-R), neuromedin B receptor, bombesin receptor subtype-3) were expressed in the cell lines, reverse transcription/PCR analysis of cellular RNA followed by hybridization with receptor-specific cDNA was performed. This revealed the presence of GRP-R transcript in all cell lines, while neither of the other two receptor transcripts were expressed. When intracellular calcium mobilization was measured by Fura-2/AM cell labeling and spectrofluorometric monitoring, bombesin (100 nm) induced rapid calcium mobilization in both PC-3 (>200% of baseline) and DU-145 (>100% of baseline) cells, but not in LNCaP cells. However, as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and [3H]thymidine incorporation, no growth modulation was observed with bombesin or bombesin receptor antagonist at various concentrations (0-500 nm). Our data indicate that bombesin is a potent inducer of signal transduction via GRP-R receptors in androgen-insensitive PC-3 and DU-145 prostate cancer cells. This suggests that the bombesin/GRP family of neuropeptides may play a regulatory role in the biology of androgen-independent prostate cancer.

Restricted access

J M Gunnersen, P J Roche, G W Tregear and R J Crawford

ABSTRACT

Relaxin is a peptide hormone which is produced in human reproductive tissues including the ovary and prostate gland. Little is known of the molecular events regulating relaxin gene transcription. We have studied this question using gene transfer of relaxin promoter/reporter gene constructs into a relaxin-expressing cell line. A number of human cell lines expressed relaxin as detected by reverse transcription-PCR. In one of these lines, the prostate adenocarcinoma cell line LNCaP.FGC, relaxin mRNA was also detected by Northern blot analysis. The DNA sequences of the proximal 5′-flanking regions (∼900 nucleotides) of the two human relaxin genes, HI and H2, were determined. Deletion constructs containing portions of the 5′-flanking regions of HI and H2 linked to the bacterial chloramphenicol acetyl transferase reporter gene were prepared. The expression of the reporter gene constructs was analysed in the LNCaP.FGC cell line and the results of these transient transfection assays have led to the identification of positive and negative regulatory regions within the 5′-flanking DNA. A difference in activity of the H1 and H2 gene promoters in this prostate cell line was observed, with the H2 promoter being more active. This situation may mimic that occurring in vivo since the relaxin secreted from the prostate gland into seminal fluid is the product of the H2 gene.

Free access

D Marcantonio, LE Chalifour, MA Alaoui-Jamali And H T Huynh, MA Alaoui-Jamali, MA Alaoui-Jamali, HT Huynh and HT Huynh

Steroid-sensitive gene-1 (SSG1) is a novel gene we cloned, found regulated by 17beta-estradiol in the rat uterus and mammary gland, and over-expressed in 7,12-dimethylbenz(a)anthracene-induced rat mammary tumors. We show here that SSG1 mRNA and protein expression are regulated by androgens in the rat ventral prostate. Increases in SSG1 mRNA levels were detected by Northern blotting after 24 h and reached a 27-fold peak 96 h following castration, relative to SSG1 mRNA expression in sham-operated rats. Dihydrotestosterone or testosterone supplementation of castrated rats prevented this rise in SSG1 mRNA. In contrast with SSG1 mRNA expression, SSG1 protein was decreased 16-fold 2 weeks following castration but was at control levels in the prostates of castrated rats receiving dihydrotestosterone or testosterone. Although SSG1 is regulated by androgens in vivo, treatment of LnCap cells with dihydrotestosterone, cyproterone acetate or flutamide did not result in the regulation of SSG1 protein levels in vitro. Immunofluorescence studies show that SSG1 is mainly expressed in prostatic smooth muscle cells. These results indicate that SSG1 is an androgen-regulated gene that is expressed in the smooth muscle component of the rat ventral prostate in vivo.

Free access

HH Juang, ML Hsieh and KH Tsui

In vitro studies indicated that dihydrotestosterone (DHT) stimulates the enzymatic activity of the mitochondrial aconitase (mACON) in androgen-sensitive prostatic carcinoma cells, LNCaP. Cell proliferation assay determined that DHT doubles the optimal proliferation response of LNCaP cells. The androgen-insensitive human prostatic carcinoma cells, PC-3, were overexpressed in the human androgen receptor to assess the involvement of the native androgen receptor in the regulation by DHT of mACON gene expression. A stable-transfected clone that expresses the full-length androgen receptor was selected and termed PCAR9. The results revealed that DHT-treated PCAR9 cells paradoxically not only reduced the enzymatic activity of mACON but also blocked the biosynthesis of intracellular ATP attenuating cell proliferation. Transient gene expression assay indicated that DHT divergently regulates the promoter activity of the mACON gene in LNCaP and PCAR9 cells. This study suggested that DHT regulates mACON gene expression and the proliferation of cells in a receptor-dependent model through modulation by unidentified non-receptor factors.

Free access

D Dondi, R Maggi, E Scaccianoce, L Martini, M Motta and A Poletti

We investigated the presence of glucocorticoid receptors (GR) as well as the role of glucocorticoids (Gc) in the control of proliferation of the androgen-independent prostate cancer cell line, DU145. We detected the presence of a specific high affinity binding site (K(d) 2.3 nM) for [(3)H]dexamethasone ([(3)H]Dex) in the cytosolic preparations of DU145 cells; the density of these binding sites is significantly higher than that detected in HA22T/VGH and in HepG2, two hepatoma cell lines classically considered models for the study of GR. Immunocytochemistry studies confirmed the presence of GR in the cytosolic compartment of DU145 cells; GR undergo translocation to the nucleus following exposure to dexamethasone (Dex). The functional activity of GR present in DU145 cells was also studied by analyzing the potency of Dex in inducing chloramphenicol acyltransferase (CAT) activity in DU145 cells transfected with a glucocorticoid/progesterone response element (GRE/PRE) tkCAT plasmid (GRE/PREtkCAT plasmid). The results have shown that Dex stimulates the transcriptional activity of GR in transfected DU145 cells with an EC(50) of 9.65 nM and a maximal induction of sevenfold above basal levels. Finally, a dose-dependent (IC(50) 3.14 nM) decrease of DU145 cell numbers was observed after their exposure to Dex for 4 days; this effect was counteracted by the presence of the steroid antagonist, RU486. In conclusion, the present data suggest a possible role of corticoids in the control of the growth of androgen-independent prostate cancer.

Free access

G Pelletier, V Luu-The, M El-Alfy, S Li and F Labrie

The subcellular distribution of steroidogenic enzymes has so far been studied mostly in classical endocrine glands and in the placenta. In the peripheral intracrine organs which synthesize sex steroids there is no indication about the organelles which contain the enzymes involved in steroid biosynthesis. We have thus investigated the subcellular localization of two enzymes involved in the production of sex steroids, namely 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and type 5 17beta-hydroxysteroid dehydrogenase (17beta-HSD). Using specific antibodies to these enzymes, we conducted immunoelectron microscopic studies in two peripheral tissues, namely the human prostate and mammary gland. In the prostate, immunolabelling for both 3beta-HSD and type 5 17beta-HSD was detected in the basal cells of the tube-alveoli as well as in fibroblasts and endothelial cells lining the blood vessels. In all the labelled cell types, the gold particles were distributed throughout the cytoplasm. No obvious association with any specific organelle could be observed, although some concentration of gold particles was occasionally found over bundles of microfilaments. In mammary gland sections immunolabelled for 3beta-HSD or type 5 17beta-HSD localization, labelling was observed in the cytoplasm of the secretory epithelial cells in both the acini and terminal ducts. Immunolabelling was also found in the endothelial cells as well as in fibroblasts in stroma and blood vessels. The gold particles were not detected over any organelles, except with the occasional accumulation of gold particles over microfilaments. The present data on the localization of two steroidogenic enzymes leading to the synthesis of testosterone indicate that these enzymes are located not only in epithelial cells but also in stromal and endothelial cells in both tissues studied. The absence of any association of the enzymes with membrane-bound organelles appears as a common finding in the reactive cell types of two peripheral tissues.

Restricted access

G. Pelletier, C. Labrie, J. Simard, M. Duval, M. G. Martinoli, H. Zhao and F. Labrie

ABSTRACT

Prostatic steroid-binding protein (PBP) is the most abundant protein synthesized in the rat ventral prostate. The protein is under strict androgenic control and is made of two subunits containing the polypeptides Cl, C2 and C3. Using an 35S-labelled cDNA probe, we have used quantitative in-situ hybridization to assess the regulation of polypeptide Cl mRNA levels by sex steroids in the adult male rat. Densitometric quantification of autoradiographic hybridization signals revealed that a significant decrease in Cl mRNA levels could be detected 5 h after castration. Levels of Cl mRNA decreased by 50% 2·5 days after castration, while undetectable levels were reached within 7 days. Administration of the potent androgen 5α-dihydrotestosterone to castrated rats caused a progressive increase in Cl mRNA levels which became significant 5 h after the first injection, while prolonged treatment, for 3 and 7 days, caused 50 and 100% reversals respectively of the effect of castration on Cl mRNA levels. Similar results were obtained by dot-blot hybridization using the same 32P-labelled cDNA probe, thus confirming the specificity and quantification achieved by in-situ hybridization. Administration of oestradiol-17β to orchiectomized adult rats for 14 days had no effect on steady-state Cl mRNA levels. Progesterone, on the other hand, at the dose used (2 mg twice daily) caused a marked increase in Cl mRNA levels, measured by in-situ hybridization, which was completely reversed by concomitant administration of the pure antiandrogen flutamide.

The present data clearly demonstrate that the expression of PBP Cl peptide mRNA is under strict androgenic control and is a very sensitive and specific parameter of androgenic activity. They also indicate that quantitative in-situ hybridization is a powerful, sensitive and most efficient tool to study the regulation of gene expression while, in addition, providing precise information about the site of mRNA localization as well as information about the histology of the tissue, particularly the heterogeneous nature of the acinar response to androgenic stimulation and deprivation.