Search Results

You are looking at 1 - 10 of 11 items for

  • Author: Ying Liu x
Clear All Modify Search
Free access

Simona Volpi, Ying Liu and Greti Aguilera

Previous studies show that binding of nuclear proteins to GAGA repeats (GAGA box) in the vasopressin type 1b receptor (V1bR) promoter is essential for transcriptional initiation of the gene. To determine whether increased vasopressin (VP) during stress activates V1bR expression through the GAGA box, we examined the effects of VP on GAGA binding activity and on the ability of the V1bR promoter to recruit RNA polymerase in the hypothalamic cell line, H32. In chromatin immunoprecipitation assays, VP induced RNA polymerase II recruitment by the wild type V1bR promoter but not by a construct with the major GAGA box deletion. VP (10 min) also increased binding of nuclear proteins to radiolabeled GAGA oligonucleotides in electromobility shift assays. VP-induced GAGA binding activity was potentiated by the protein kinase C inhibitor, calphostin C, and was prevented by the MEK inhibitor, UO126, and the epidermal growth factor receptor (EGFR) inhibitor, AG1478, suggesting that VP activates GAGA binding through transactivation of the EGFR. This was confirmed by western blot experiments showing rapid increases in phospho ERK after incubation with VP, an effect that was potentiated by calphostin C and inhibited by UO12 and AG1478, as well as by the ability of VP to phosphorylate the EGFR. Using receptor selective VP analogs we showed that both V1aR and V1bR subtypes can mediate GAGA binding activation in H32 cells. This study demonstrates that VP stimulates GAGA binding to the V1bR promoter through transactivation of the EGFR and MAP kinase. The data support the hypothesis that VP contributes to pituitary V1bR upregulation during stress through GAGA binding-mediated transcriptional activation.

Free access

Ying Xing, Jingbo Lai, Xiangyang Liu, Nana Zhang, Jie Ming, Hengxin Liu and Xi Zhang

Diabetic foot ulceration (DFU) represents a common vascular complication of diabetes mellitus (DM) with high morbidity and disability resulting from amputation. Netrin-1 level was decreased in type 2 DM patients and has been identified as a protective regulator against diabetes-triggered myocardial infarction and nephropathy. Unfortunately, its role and molecular mechanism in DFU remain poorly elucidated. Here, netrin-1 levels were reduced in DM and DFU patients relative to healthy controls, with netrin-1 levels being the lowest in DFU patients. Moreover, exposure to high glucose (HG) also suppressed netrin-1 expression in human umbilical vein endothelial cells (HUVECs). Elevated netrin-1 expression by infection with Ad-netrin-1 adenovirus vector protected against HUVEC injury in response to HG by ameliorating the inhibitory effects on cell viability, lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels, cell apoptotic rate and caspase-3 activity. Importantly, HG-impaired angiogenesis was improved after netrin-1 overexpression by elevating cell migration, capillary-like tube formation and VEGF production. Mechanism assay substantiated that netrin-1 elevation increased the phosphorylation levels of AKT and eNOS, and NO production, which was notably suppressed by HG, indicating that netrin-1 overexpression restored HG-triggered impairment of the PI3K/AKT-eNOS pathway. More intriguingly, preconditioning with LY294002 (PI3K/AKT antagonist) or N G-monomethyl-l-arginine (eNOS inhibitor) antagonized netrin-1-induced activation of the PI3K/AKT-eNOS pathway. Concomitantly, treatment with these antagonists also attenuated the protective role of netrin-1 in endothelial dysfunction upon HG stimulation. These results suggest that elevation of netrin-1 may restore HG-triggered impairment of HUVEC and angiogenesis by activating the PI3K/AKT-eNOS pathway, indicating a potential agent for wound healing in DFU patients.

Free access

Yanjun Liu, Yuichi Nakagawa, Ying Wang, Limei Liu, Hongwei Du, Wei Wang, Xiuhai Ren, Kabirullah Lutfy and Theodore C Friedman

Intracellular glucocorticoid (GC) receptor (GR) function determines tissue sensitivity to GCs and strongly affects the development of type 2 diabetes and obesity. 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) mediates intracellular steroid exposure to mouse liver GR by prereceptor reactivation of GCs and is crucially dependent on hexose-6-phosphate dehydrogenase (H6PDH)-generating NADPH system. Pharmacological inhibition of 11β-HSD1 improves insulin intolerance and obesity. Here, we evaluated the potential beneficial effects of 11β-HSD1 inhibitor carbenoxolone (CBX) in diet-induced obese (DIO) and insulin-resistant mice by examining the possible influence of CBX on the expression of GR, 11β-HSD1, and H6PDH in vivo and in vitro in hepatocytes. Treatment of DIO mice with CBX markedly reduced hepatic GR mRNA levels and reduced weight gain, hyperglycemia, and insulin resistance. The reduction of hepatic GR gene expression was accompanied by CBX-induced inhibition of both 11β-HSD1 and H6PDH activity and mRNA in the liver. Moreover, CBX treatment also suppressed the expression of both phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase enzyme (G6Pase) mRNA and improved hepatic [1, 2-3H] deoxy-d-glucose uptake in DIO mice. In addition, the treatment of primary cultures of hepatocytes with increasing concentrations of CBX led to a dose-dependent downregulation of GR mRNA levels, which correlated with the suppression of both 11β-HSD1 and H6PDH activity and their gene expression. Addition of CBX to primary hepatocytes also resulted in suppression of both PEPCK and G6Pase mRNA levels. These findings suggest that CBX exerts some of its beneficial effects, at least in part, by inhibiting hepatic GR and H6PDH expression.

Free access

Hanze Du, Limei Liu, Ying Wang, Yuichi Nakagawa, Alexei Lyzlov, Kabirullah Lutfy, Theodore C Friedman, Xiaozhong Peng and Yanjun Liu

Pre-receptor activation of glucocorticoids via 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 (HSD11B1)) has been identified as an important mediator of the metabolic syndrome. Hexose-6-phosphate dehydrogenase (H6PDH) mediates 11β-HSD1 amplifying tissue glucocorticoid production by driving intracellular NADPH exposure to 11β-HSD1 and requires glucose-6-phosphate transporter (G6PT (SLC37A4)) to maintain its activity. However, the potential effects of G6PT on tissue glucocorticoid production in type 2 diabetes and obesity have not yet been defined. Here, we evaluated the possible role of G6PT antisense oligonucleotides (G6PT ASO) in the pre-receptor metabolism of glucocorticoids as related to glucose homeostasis and insulin tolerance by examining the production of 11β-HSD1 and H6PDH in both male db/ + and db/db mouse liver tissue. We observed that G6PT ASO treatment of db/db mice markedly reduced hepatic G6PT mRNA and protein levels and substantially diminished the activation of hepatic 11β-HSD1 and H6PDH. Reduction of G6pt expression was correlated with the suppression of both hepatic gluconeogenic enzymes G6Pase and PEPCK and corresponded to the improvement of hyperglycemia and insulin resistance in db/db mice. Addition of G6PT ASO to mouse hepa1–6 cells led to a dose-dependent decrease in 11B-Hsd1 production. Knockdown of G6PT with RNA interference also impaired 11B-Hsd1 expression and showed comparable effects to H6pdh siRNA on silencing of H6pdh and 11B-Hsd1 expression in these intact cells. These findings suggest that G6PT plays an important role in the modulation of pre-receptor activation of glucocorticoids and provides new insights into the role of G6PT in the development of type 2 diabetes.

Free access

Huan Zhang, Xiuxia Liu, Shanshan Zhou, Ye Jia, Ying Li, Yuguo Song, Junnan Wang and Hao Wu

c-Jun N-terminal kinase (JNK) contributes to the pathogenesis of diabetic nephropathy (DN). The JNK inhibitor SP600125 was reported to ameliorate DN. However, the mechanism remained unclear. We previously reported that SP600125 activated nuclear factor erythroid 2-related factor 2 (NRF2), a governor of the cellular antioxidant defense system, in the aortas of the diabetic mice. Given the critical role of NRF2 in preventing DN, the present study aimed to test whether or not NRF2 is required for SP600125’s protection against DN. To test the role of NRF2 in SP600125’s effect, streptozotocin-induced C57BL/6 wild-type (WT) and Nrf2-knockout (KO) diabetic mice were treated in the presence or absence of SP600125, for 24 weeks. To explore the mechanism by which SP600125 activates NRF2, mouse mesangial cells (MMCs) were treated with high glucose (HG), in the presence or absence of either SP600125 or JNK siRNA. SP600125 significantly attenuated the diabetes-induced renal oxidative stress, inflammation, fibrosis, pathological change and dysfunction in the WT, but not the Nrf2 KO mice. SP600125 inactivated JNK, inhibited kelch-like ECH-associated protein 1 expression, preserved NRF2 protein and facilitated its nuclear translocation in the kidneys of the WT mice, the effects of which were similarly produced by either SP600125 or JNK siRNA in HG-treated MMCs. Further, both SP600125 and JNK siRNA alleviated HG-induced mesangial oxidative stress and expression of inflammatory and fibrotic genes. The present study demonstrates that NRF2 is required for SP600125’s protection against DN. SP600125 activates NRF2 possibly via inhibition of JNK-induced Keap1 expression.

Free access

Yajie Guo, Junjie Yu, Chunxia Wang, Kai Li, Bin Liu, Ying Du, Fei Xiao, Shanghai Chen and Feifan Guo

MicroRNAs, a class of small noncoding RNAs, are implicated in controlling a variety of biological processes. We have shown that leucine deprivation suppresses lipogenesis by inhibiting fatty acid synthase (FAS) expression in the liver previously; the aim of our current study is to investigate which kind of microRNA is involved in the regulation of FAS expression in response to leucine deprivation. Here, we indicated that microRNA-212-5p specifically binds to mouse FAS 3′UTR and inhibits its activity. Leucine deficiency significantly increased the mRNA levels of miR-212-5p in the livers of mice. Further studies proved that miR-212-5p also directly binds to the 3′UTR of stearoyl-CoA desaturase-1 (SCD1) to inhibit its activity. Overexpression of miR-212-5p decreases the protein levels of FAS and SCD1 in vitro and in vivo, and silencing of miR-212-5p has the opposite effects in mouse primary hepatocytes. Moreover, overexpression of miR-212-5p significantly decreases triglyceride (TG) accumulation in primary hepatocytes and in the livers of mice injected with adenovirus-mediated overexpressing of miR-212-5p (Ad-miR-212). Interestingly, inhibition of miR-212-5p reverses the suppressive effects of leucine deficiency on FAS and SCD1 expression, as well as TG accumulation in mouse primary hepatocytes. Finally, we demonstrate that leucine deficiency induces the expression of miR-212-5p in a GCN2/ATF4-dependent manner. Taken together, our results demonstrate a novel function of hepatic miR-212-5p in the regulation of lipid metabolism which represents a potential therapeutic target for the treatment of non-alcohol fatty liver diseases (NAFLD).

Free access

Jakob Bondo Hansen, Laila Romagueira Bichara Dos Santos, Ying Liu, Kacey J Prentice, Frederik Teudt, Morten Tonnesen, Jean-Christophe Jonas, Michael B Wheeler and Thomas Mandrup-Poulsen

Type 2 diabetes (T2D) arises when the pancreatic beta-cell fails to compensate for increased insulin needs due to insulin resistance. Glucolipotoxicity (GLT) has been proposed to induce beta-cell dysfunction in T2D by formation of reactive oxygen species (ROS). Here, we examined if modeling glucolipotoxic conditions by high glucose-high free fatty acid (FFA) exposure (GLT) regulates beta-cell iron transport, by increasing the cytosolic labile iron pool (LIP). In isolated mouse islets, the GLT-induced increase in the LIP catalyzed cytosolic ROS formation and induced apoptosis. We show that GLT-induced ROS production is regulated by an increased LIP associated with elevated expression of genes regulating iron import. Using pharmacological and transgenic approaches, we show that iron reduction and decreased iron import protects from GLT-induced ROS production, prevents impairment of the mitochondrial membrane potential (MMP) and inhibits apoptosis. This study identifies a novel pathway underlying GLT-induced apoptosis involving increased iron import, generation of hydroxyl radicals from hydrogen peroxide through the Fenton reaction in the cytosolic compartment associated with dissipation of the MMP and beta-cell apoptosis.

Restricted access

Yujia Pan, Weikang Yun, Bingshuai Shi, Rongjun Cui, Chi Liu, Zhong Ding, Jialin Fan, Wenqian Jiang, Jiebing Tang, Tianhu Zheng, Xiaoguang Yu and Ying Liu

miR-146b-5p is overexpressed in papillary thyroid carcinoma (PTC) and is thought to be a related diagnostic marker. Previous studies have indicated the effects of iodine on oncogenic activation. However, the effect of iodine on the proliferation of PTC cells and the associated underlying mechanisms remain unclear. We found that miR-146b-5p was downregulated and smad4 was upregulated in patients exposed to high iodine concentration by in situ hybridisation (ISH) and immunohistochemical (IHC). NaI (10−3 M) treatment downregulated miR-146b-5p and upregulated Smad4 in PTC cell lines. Luciferase assay was used to confirm that Smad4 is a target of miR-146b-5p. Furthermore, MTT assay and cell cycle analysis indicated that 10−3 M NaI suppressed cell proliferation and caused G0/G1 phase arrest. Real-time PCR and Western blotting demonstrated that 10−3 M NaI increased p21, p27, and p57 levels and reduced cyclin D1 levels in PTC cells. Our findings suggest that 10−3 M NaI increases Smad4 levels through repression of miR-146b-5p expression, curbing the proliferation in PTC.

Free access

Knut R Steffensen, Soek Ying Neo, Thomas M Stulnig, Vinsensius B Vega, Safia S Rahman, Gertrud U Schuster, Jan-Åke Gustafsson and Edison T Liu

The liver X receptors α and β (LXRα and LXRβ ) are members of the nuclear receptor superfamily of proteins which are highly expressed in metabolically active tissues. They regulate gene expression of critical genes involved in cholesterol catabolism and transport, lipid and triglyceride biosynthesis and carbohydrate metabolism in response to distinct oxysterols and intermediates in the cholesterol metabolic pathway. The biological roles of the LXRs in tissues other than liver, intestine and adipose tissue are poorly elucidated. In this study we used global gene-expression profiling analysis to detect differences in expression patterns in several tissues from mice fed an LXR agonist or vehicle. Our results show that LXR plays an important role in the kidney, lung, adrenals, brain, testis and heart where several putative LXR target genes were found. The effects of the LXRs were further analysed in adrenals where treatment with an LXR agonist induced expression of adrenocorticotrophic hormone receptor, suppressed expression of uncoupling protein (UCP)-1 and UCP-3 as well as several glycolytic enzymes and led to increased serum corticosterone levels. These results indicate novel biological roles of the LXR including regulation of energy metabolism, glycolysis and steroidogenesis in the adrenals via alteration of expression profiles of putative target genes.

Free access

Kathryn L Auld, Stephen P Berasi, Yan Liu, Michael Cain, Ying Zhang, Christine Huard, Shoichi Fukayama, Jing Zhang, Sung Choe, Wenyan Zhong, Bheem M Bhat, Ramesh A Bhat, Eugene L Brown and Robert V Martinez

Based on its homology to the estrogen receptor and its roles in osteoblast and chondrocyte differentiation, the orphan nuclear receptor estrogen-related receptor α (ERRα (ESRRA)) is an intriguing therapeutic target for osteoporosis and other bone diseases. The objective of this study was to better characterize the molecular mechanisms by which ERRα modulates osteoblastogenesis. Experiments from multiple systems demonstrated that ERRα modulates Wnt signaling, a crucial pathway for proper regulation of bone development. This was validated using a Wnt-luciferase reporter, where ERRα showed co-activator-dependent (peroxisome proliferator-activated receptor gamma co-activator 1α, PGC-1α) stimulatory effects. Interestingly, knockdown of ERR α expression also enhanced WNT signaling. In combination, these data indicated that ERRα could serve to either activate or repress Wnt signaling depending on the presence or absence of its co-activator PGC-1α. The observed Wnt pathway modulation was cell intrinsic and did not alter β-catenin nuclear translocation but was dependent on DNA binding of ERRα. We also found that expression of active ERRα correlated with Wnt pathway effects on osteoblastic differentiation in two cell types, consistent with a role for ERRα in modulating the Wnt pathway. In conclusion, this work identifies ERRα, in conjunction with co-activators such as PGC-1α, as a new regulator of the Wnt-signaling pathway during osteoblast differentiation, through a cell-intrinsic mechanism not affecting β-catenin nuclear translocation.