Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Y Zhou x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

Y Zhou, L He, G Baumann, and J J Kopchick

ABSTRACT

In murine species, the GH receptor (mGHR) gene encodes a full-length membrane-anchored mGHR and a truncated soluble receptor ectodomain (the GH-binding protein; mGHBP). The mGHR and mGHBP mRNAs are generated by alternative pre-mRNA splicing. Similar GHR/GHBP pairs are generated in other species by proteolysis of the GHR. The regulation of GHBP expression and the biological role of GHBP are not clear. In order to begin to dissect the factors responsible for regulating expression of mGHR and mGHBP, we have cloned a mouse GH receptor/binding protein (mGHR/BP) minigene consisting of two mGHR cDNA fragments and an mGHR/BP genomic sequence, such that the mGHR and mGHBP can be derived from the minigene by mimicking native alternative pre-mRNA splicing. To study the possible role of selection of polyadenylation relative to the expression of mGHR and mGHBP, we deleted the two tandem poly A addition signals and the flanking AT-rich region within the exon (exon 8A) that encodes the carboxy terminus of mGHBP. In addition, two other mutated forms of the minigene, one containing a mutated alternative splice acceptor site (SAS) near exon 8A and the other possessing a deletion of the intron between exons 7 and 8A (intron 7/8A), were generated. Expression of the mGHR/BP minigene and its mutated forms in transfected mouse L cells revealed that removal of the polyadenylation signals diminished but did not abolish either mGHR or mGHBP production. However, mutation of the SAS yielded normal mGHR and an mGHBP which may be a result of the translation of an mRNA possessing an open reading frame in intron 7/8A. Additionally, removal of intron 7/8A abolished mGHR expression but resulted in mGHBP production. The results suggest that selection of alternative polyadenylation sites of the mGHR/BP gene does not play a major role in the regulation of expression of mGHR and mGHBP in vitro. These results also suggest that mutation of the SAS near exon 8A does not abolish the ability of mGHR/BP gene to produce an mGHBP that retains the ability to bind GH, although the new mGHBP may be different from the natural mGHBP at its carboxy terminus.

Free access

X Fang, R Palanivel, X Zhou, Y Liu, A Xu, Y Wang, and G Sweeney

Adiponectin has been shown to regulate glucose and fatty acid uptake and metabolism in skeletal muscle. Here we investigated the role of the recently cloned adiponectin receptor (AdipoR) isoforms in mediating effects of both globular (gAd) and full-length (fAd) adiponectin, and their regulation by hyperglycemia (25 mM, 20 h) and hyperinsulinemia (100 nM, 20 h). We used L6 rat skeletal muscle cells, which were found to express both AdipoR1 and AdipoR2 mRNA in a ratio of over 6:1 respectively. Hyperglycemia and hyperinsulinemia both decreased AdipoR1 receptor expression by approximately 50%, while the latter induced an increase of approximately threefold in AdipoR2 expression. The ability of gAd to increase GLUT4 myc translocation, glucose uptake, fatty acid uptake and oxidation, as well as AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, was decreased by both hyperglycemia and hyperinsulinemia. Interestingly, hyperinsulinemia induced the ability of fAd to elicit fatty acid uptake and enhanced fatty acid oxidation in response to fAd. In summary, our results suggest that both hyperglycemia and hyperinsulinemia cause gAd resistance in rat skeletal muscle cells. However, hyperinsulinemia induces a switch toward increased fAd sensitivity in these cells.

Free access

FY Diao, M Xu, Y Hu, J Li, Z Xu, M Lin, L Wang, Y Zhou, Z Zhou, J Liu, and J Sha

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders; it is characterized by polycystic ovaries, hyperandrogenism and chronic anovulation. To obtain a global view of those genes that might be involved in the development of this complex clinical disorder, we used recently developed cDNA microarray technology to compare differential gene expressions between normal human ovary and ovaries from PCOS patients. A total of 9216 clones randomly selected from a commercial human ovary cDNA library were screened. Among them, 290 clones showed differential expressions, including 119 known genes and 100 known or unknown expressed sequence tags (ESTs). Among 119 known genes, 88 were upregulated and 31 downregulated in the PCOS ovary, as compared with normal human ovary. These differentially expressed genes are involved in various biologic functions, such as cell division/apoptosis, regulation of gene expression and metabolism, reflecting the complexity of clinical manifestations of PCOS. The molecular characteristics established from our study will further our understanding of the pathogenesis of PCOS and help us to identify new targets for further studies and for the development of new therapeutic interventions.

Free access

L Y Zhou, D S Wang, B Senthilkumaran, M Yoshikuni, Y Shibata, T Kobayashi, C C Sudhakumari, and Y Nagahama

In order to elucidate the roles of 17β-HSDs in fish gonadal steroidogenesis, three types of 17β-HSDs (17β-HSD1, 17β-HSD8 and putative 17β-HSD12) were cloned and characterized from the Nile tilapia, Oreochromis niloticus. The cloned cDNAs of 17β-HSD type 1, 8 and 12 were 1504, 1006 and 1930 bp long, with open reading frames encoding proteins of 289, 256 and 314 aminoacids, respectively. Tissue distribution pattern analyzed by RT-PCR and Northern blot showed that 17β-HSD1 was dominantly expressed in the ovary, while the putative 17β-HSD12, one of the two duplicates found in fish, is a male specific enzyme and expressed exclusively in testis (detected by RT-PCR only). On the other hand, 17β-HSD8 was expressed in the brain, gill, heart, liver, intestine, gonad, kidney and muscle of both male and female. Enzymatic assays of the three types of 17β-HSDs were performed using recombinant proteins expressed in E. coli or HEK 293 cells. Tilapia 17β-HSD1 expressed in E. coli had the preference for NADP(H) as cofactor and could catalyze the inter-conversion between estrone and estradiol efficiently as well as the inter-conversion between androstenedione and testosterone, but less efficiently. Tilapia 17β-HSD8 recombinant protein expressed in HEK 293 cells could catalyze the conversion of testosterone to androstenedione, as well as the inter-conversion between estrone and estradiol. However, the putative 17β-HSD12 expressed in E. coli or in HEK 293 cells showed no conversion to any of the four substrates tested in this study. Based on enzyme characterization and tissue distribution, it is plausible to attribute crucial roles to 17β-HSDs in the gonadal steroidogenesis of teleosts.

Free access

David E C Cole, Francisco H J Yun, Betty Y L Wong, Andrew Y Shuen, Ronald A Booth, Alfredo Scillitani, Svetlana Pidasheva, Xiang Zhou, Lucie Canaff, and Geoffrey N Hendy

The calcium-sensing receptor (CASR), a plasma membrane G-protein-coupled receptor, is expressed in parathyroid gland and kidney, and controls systemic calcium homeostasis. Inactivating CASR mutations are associated with familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism, and activating mutations cause autosomal dominant hypocalcemia (ADH). CASR mutation identification plays an important role in the clinical management of mineral metabolism disorders. We describe here a high-throughput method using screening with denaturing high performance liquid chromatography (DHPLC) to initially interrogate 12 amplicons covering translated exons and exon/intron boundaries, followed by sequencing of any amplicon with a modified melting curve relative to wild type, and direct sequencing of a 13th amplicon encoding the COOH-terminal tail to distinguish causative mutations from three common missense single nucleotide polymorphisms. A blinded analysis of 32 positive controls representing mutations throughout the CASR sequence, as well as 22 negative controls, yielded a concordance rate of 100%. We report eight novel and five recurrent FHH mutations, along with six novel and two recurrent ADH mutations. Thus, DHPLC provides a rapid and effective means to screen for CASR mutations.

Free access

M Zhang, Y Tao, B Zhou, H Xie, F Wang, L Lei, L Huo, Q Sun, and G Xia

Atrial natriuretic peptide (ANP) as well as its receptors is found in mammalian ovary and follicular cells and its function in oocyte meiotic maturation has also been reported in Xenopus, hamster and rat. But the results are controversial and the physiological mechanism of ANP on oocyte maturation is not clear, especially the relationship between gonadotrophin and ANP as well as the signal transduction, and these need further study. The present study conducted experiments to examine these questions by using drug treatment and Western blot analysis and focused on pig oocyte meiotic maturation and cumulus expansion in vitro. The results revealed that ANP could inhibited FSH-induced pig oocyte maturation and cumulus expansion and prevent the full phosphorylation of mitogen-activated protein kinase in both oocytes and cumulus cells, and that these inhibitory effects could be mimicked by 8-Br-cyclic guanosine 5′-monophosphate (8-Br-cGMP), but blocked by a protein kinase G (PKG) inhibitor KT5823. Zaprinast, a cGMP-specific phosphodiesterase inhibitor, could enhance the inhibitory effect of ANP on oocyte maturation. A specific analogue of ANP, C-ANP-(4–23), which binds to the natriuretic peptide receptor-C (NPRC), had no effect in either FSH-induced or spontaneous oocyte maturation. Treatment with forskolin, a stimulator of adenylate cyclase, had a biphasic effect; 44 h treatment induced cumulus expansion but inhibited oocyte maturation while 2 h treatment induced maturation of cumulus-enclosed oocytes (CEOs). Both ANP and C-ANP-(4–23) could inhibit the effect of forskolin on CEO maturation, and these inhibitory effects of ANP/C-ANP-(4–23) could be blocked by preincubation with pertussis toxin (PT), consistent with mediation by a Gi protein(s) in the cumulus cells. All these results suggest that ANP is a multifunctional regulator of FSH and forskolin on pig CEO maturation by two signalling mechanisms: one is via a cGMP/PKG pathway, the other is via NPRC receptors in cumulus cells and the activation of the PT-sensitive Gi protein(s).

Restricted access

T L Ott, Y Zhou, M A Mirando, C Stevens, J P Harney, T F Ogle, and F W Bazer

ABSTRACT

This study characterized changes in levels of mRNA and protein for endometrial oestrogen receptors (ERs) and progesterone receptors (PRs) during luteolysis and maternal recognition of pregnancy. For cyclic and pregnant ewes, endometrium was collected on days 10, 12, 14, or 16 post-oestrus (4 ewes/day for each status) for the measurement of ER and PR mRNA and protein. The amount of receptor mRNA is expressed in relative units above background, measured from radiographs of dot-blot hybridization of total endometrial RNA with ER and PR cDNAs. At hysterectomy, jugular vein blood samples were collected and assayed for progesterone, total corpus luteum weight was recorded and, in vitro, endometrial oxytocin-stimulated inositol phosphate formation was estimated. In pregnant ewes, plasma progesterone increased gradually between days 10 and 16 (P<0·01), corpus luteum weight was stable at approximately 08 g and oxytocin did not stimulate endometrial formation of inositol phosphates in vitro. In contrast, in cyclic ewes, plasma progesterone decreased from day 10 to day 16 (P<0·01), corpus luteum weight decreased after day 14 to approximately 0·48 g (P=0·05) and oxytocin stimulated an increase of approximately 1300% in the endometrial formation of inositol phosphates on day 16. cDNAs specifically hybridized with 1·6 and 31 kb transcripts for PR mRNA and a 6·5 kb transcript for ER mRNA. In cyclic ewes, the amount of PR mRNA increased from day 10 to maximum levels on days 14–16. The number of PRs decreased from day 10 (225 pmol/mg DNA) to day 12 (0·98 pmol/mg DNA) and then increased from day 14 to day 16 (2·8 pmol/mg DNA). In pregnant ewes, PR mRNA levels were greatest on days 10–12 and decreased by approximately 50% by day 16. In contrast, the number of PRs was relatively unchanged from day 10 to day 16 (1·53 to 103 pmol/mg DNA). In cyclic ewes, the amount of ER mRNA was lowest at day 10 and increased fivefold by day 16. The number of ERs remained relatively unchanged from day 10 to day 14 (607 pmol/mg DNA) and increased by day 16 (1612 pmol/mg DNA). In pregnant ewes, ER mRNA decreased by approximately 80% from day 12 to day 16. Similarly, the number of ERs decreased from day 10 to day 16 (5·41 to 205 pmol/mg DNA). Correlations between ER mRNA and PR mRNA (r=0·68), ERs and PRs (r = 0·50) and ER mRNA and ERs (r=0·50) were high (P<0·01). PR mRNA and PRs, PR mRNA and ERs, and ER mRNA and PRs were not correlated (P>0·1). Pregnancy had the apparent effect of stabilizing the number of endometrial PRs and inhibiting ER production by decreasing both the amount of ER mRNA and ER protein.

Restricted access

M A Mirando, J P Harney, Y Zhou, T F Ogle, T L Ott, R J Moffatt, and F W Bazer

ABSTRACT

This study determined whether twice-daily intrauterine injections of ovine conceptus secretory proteins (oCSP) containing type-I trophoblast interferon (25 μg/uterine horn) from day 11 to day 15 post-oestrus (oestrus = day 0) could alter the binding capacities of endometrial receptors for oxytocin, progesterone and oestrogen in cyclic ewes when compared with control ewes receiving serum protein (SP) injections. Injections of oCSP on days 11–15 post-oestrus decreased concentrations of oestrogen receptors (P<0·06), oestrogen receptor mRNA (P<0·05) and progesterone receptors (P<0·08) in endometrium on day 16 when compared with SP-infused control ewes, which were undergoing corpus luteum regression on days 14–16. Injection of oCSP also decreased the number (P<0·10) and affinity (P<0·06) of oxytocin receptors. Inositol phosphate formation induced in the endometrium on day 16 by 100 nm oxytocin in vitro was highly correlated with the concentration (r≥0·93, P<0·001) and K d (r= –0·91, P<0·01) of oxytocin receptors in SP-infused ewes, but was not as highly correlated with concentration (r≤0·83, P<0·06) and K d (r≤ –0·40, P>0·40) of oxytocin receptors in oCSP-infused ewes. This indicates that oCSP disrupted the relationship between oxytocin receptor binding and oxytocin-induced activation of its second messenger system. These results indicate that antiluteolytic type-I trophoblast interferon may prevent oxytocininduced luteolytic pulsatile secretion of prostaglandin F during maternal recognition of pregnancy in sheep, by reducing the synthesis and affinity of endometrial oxytocin receptors. Inhibition of other components of the oxytocin receptor—phospholipase C system by ovine trophoblast interferon may also be involved in reducing endometrial responsiveness to oxytocin. Ovine trophoblast interferon may inhibit the synthesis of endometrial oestrogen receptors to inhibit responsiveness to oxytocin during early pregnancy in ewes.