Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Xing Wang x
Clear All Modify Search
Free access

Wen-Li Zhao, Chun-Yan Liu, Wen Liu, Di Wang, Jin-Xing Wang and Xiao-Fan Zhao

Insect molting and metamorphosis are regulated by two hormones: 20-hydroxyecdysone (20E) and juvenile hormone (JH). The hormone 20E regulates gene transcription via the nuclear receptor EcR to promote metamorphosis, whereas JH regulates gene transcription via its intracellular receptor methoprene-tolerant (Met) to prevent larval–pupal transition. However, the function and mechanism of Met in various insect developments are not well understood. We propose that Met1 plays a key role in maintaining larval status not only by promoting JH-responsive gene transcription but also by repressing 20E-responsive gene transcription in the Lepidopteran insect Helicoverpa armigera. Met1 protein is increased during feeding stage and decreased during molting and metamorphic stages. Met1 is upregulated by JH III and a low concentration of 20E independently, but is downregulated by a high concentration of 20E. Knockdown of Met1 in larvae causes precocious pupation, decrease in JH pathway gene expression, and increase in 20E pathway gene expression. Met1 interacts with heat shock protein 90 and binds to JH response element to regulate Krüppel homolog 1 transcription in JH III induction. Met1 interacts with ultraspiracle protein 1 (USP1) to repress 20E transcription complex EcRB1/USP1 formation and binding to ecdysone response element. These data indicate that JH via Met1 regulates JH pathway gene expression and represses 20E pathway gene expression to maintain the larval status.

Free access

Sarah X Zhang, Joshua J Wang, Guoquan Gao, Kyoungmin Parke and Jian-xing Ma

It has been shown that the balance between vascular endothelial growth factor (VEGF), a major angiogenic stimulator, and pigment epithelium-derived factor (PEDF), a potent angiogenic inhibitor, is critical for the regulation of vascular permeability and angiogenesis. However, the regulation of the balance is largely unclear. The present study demonstrated that there is a reciprocal interaction between VEGF and PEDF in the retina. PEDF significantly decreased VEGF expression in both retinal capillary endothelial cells (RCEC) and Müller cells. This PEDF effect was confirmed in the retina of rats with oxygen-induced retinopathy. Silencing of the PEDF gene by siRNA in Müller cells resulted in a significant upregulation of VEGF expression at both the RNA and protein levels, suggesting that PEDF is an endogenous negative regulator of VEGF. The further study of the mechanism showed that PEDF inhibited hypoxia-induced increases in VEGF promoter activity, HIF-1 nuclear translocation and mitogen activated protein kinase phosphorylation. These results suggest that PEDF inhibits VEGF expression at the transcriptional level. In addition, PEDF effectively inhibited VEGF binding to RCEC. Moreover, in vitro receptor-binding assay demonstrated that PEDF competed with VEGF for binding to VEGF receptor 2, which may represent a new mechanism for PEDF activity. On the other hand, VEGF significantly downregulated PEDF expression in RCEC, but not in retinal Müller cells, suggesting a VEGF receptor-mediated process. These results suggest that the reciprocal regulation between VEGF and PEDF may play a role in angiogenic control. The decrease in PEDF levels in the retina is at least partially responsible for the increase in VEGF expression and subsequent vascular leakage and neovascularization in diabetes.

Free access

Sarah X Zhang, Joshua J Wang, Azar Dashti, Kenneth Wilson, Ming-Hui Zou, Luke Szweda, Jian-Xing Ma and Timothy J Lyons

Oxidized and/or glycated low-density lipoprotein (LDL) may mediate capillary injury in diabetic retinopathy. The mechanisms may involve pro-inflammatory and pro-oxidant effects on retinal capillary pericytes. In this study, these effects, and the protective effects of pigment epithelium-derived factor (PEDF), were defined in a primary human pericyte model. Human retinal pericytes were exposed to 100 μg/ml native LDL (N-LDL) or heavily oxidized glycated LDL (HOG-LDL) with or without PEDF at 10–160 nM for 24 h. To assess pro-inflammatory effects, monocyte chemoattractant protein-1 (MCP-1) secretion was measured by ELISA, and nuclear factor-κB (NF-κB) activation was detected by immunocytochemistry. Oxidative stress was determined by measuring intracellular reactive oxygen species (ROS), peroxynitrite (ONOO) formation, inducible nitric oxide synthase (iNOS) expression, and nitric oxide (NO) production. The results showed that MCP-1 was significantly increased by HOG-LDL, and the effect was attenuated by PEDF in a dose-dependent manner. PEDF also attenuated the HOG-LDL-induced NF-κB activation, suggesting that the inhibitory effect of PEDF on MCP-1 was at least partially through the blockade of NF-κB activation. Further studies demonstrated that HOG-LDL, but not N-LDL, significantly increased ONOO formation, NO production, and iNOS expression. These changes were also alleviated by PEDF. Moreover, PEDF significantly ameliorated HOG-LDL-induced ROS generation through up-regulation of superoxide dismutase 1 expression. Taken together, these results demonstrate pro-inflammatory and pro-oxidant effects of HOG-LDL on retinal pericytes, which were effectively ameliorated by PEDF. Suppressing MCP-1 production and thus inhibiting macrophage recruitment may represent a new mechanism for the salutary effect of PEDF in diabetic retinopathy and warrants more studies in future.