Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Ximing Dong x
  • Refine by access: All content x
Clear All Modify Search
Xiaojing Wei Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China

Search for other papers by Xiaojing Wei in
Google Scholar
PubMed
Close
,
Yutian Tan Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China

Search for other papers by Yutian Tan in
Google Scholar
PubMed
Close
,
Jiaqi Huang Institute of Basic Medicine, School of Medicine, Tsinghua University, Beijing, China

Search for other papers by Jiaqi Huang in
Google Scholar
PubMed
Close
,
Ximing Dong Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China

Search for other papers by Ximing Dong in
Google Scholar
PubMed
Close
,
Weijie Feng Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China

Search for other papers by Weijie Feng in
Google Scholar
PubMed
Close
,
Tanglin Liu Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China

Search for other papers by Tanglin Liu in
Google Scholar
PubMed
Close
,
Zhao Yang Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China

Search for other papers by Zhao Yang in
Google Scholar
PubMed
Close
,
Guiying Yang Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China

Search for other papers by Guiying Yang in
Google Scholar
PubMed
Close
, and
Xiao Luo Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China

Search for other papers by Xiao Luo in
Google Scholar
PubMed
Close

N1-methylnicotinamide (MNAM), a product of methylation of nicotinamide through nicotinamide N-methyltransferase, displays antidiabetic effects in male rodents. This study aimed to evaluate the ameliorative potential of MNAM on glucose metabolism in a gestational diabetes mellitus (GDM) model. C57BL/6N mice were fed with a high-fat diet (HFD) for 6 weeks before pregnancy and throughout gestation to establish the GDM model. Pregnant mice were treated with 0.3% or 1% MNAM during gestation. MNAM supplementation in CHOW diet and HFD both impaired glucose tolerance at gestational day 14.5 without changes in insulin tolerance. However, MNAM supplementation reduced hepatic lipid accumulation as well as mass and inflammation in visceral adipose tissue. MNAM treatment decreased GLUT4 mRNA and protein expression in skeletal muscle, where NAD+ salvage synthesis and antioxidant defenses were dampened. The NAD+/sirtuin system was enhanced in liver, which subsequently boosted hepatic gluconeogenesis. GLUT1 protein was diminished in placenta by MNAM. In addition, weight of placenta, fetus weight, and litter size were not affected by MNAM treatment. The decreased GLUT4 in skeletal muscle, boosted hepatic gluconeogenesis and dampened GLUT1 in placenta jointly contribute to the impairment of glucose tolerance tests by MNAM. Our data provide evidence for the careful usage of MNAM in treatment of GDM.

Open access