Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Xiaolei Yao x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

Xiaodan Li, Xiaolei Yao, Yongjin Bao, Kaiping Deng, Mingtian Deng, Fan Yang, Xun Sun, and Feng Wang

The serine-threonine protein phosphatase 2A (PP2A) is a heterotrimeric enzyme complex that plays a vital role in regulating male reproductive activities. However, as an essential member of the PP2A family, the physiological functions of PP2A regulatory subunit B55α (PPP2R2A) in testis remain inconclusive. Hu sheep are noted for their reproductive precocity and fertility and are ideal models for the study of male reproductive physiology. Here, we analyzed the expression patterns of PPP2R2A in the male Hu sheep reproductive tract at different developmental stages and further investigated its role in testosterone secretion and its underlying mechanisms. In this study, we found that there were temporal and spatial differences of PPP2R2A protein expression in testis and epididymis, especially the expression abundance in testis at 8 months old (8M) was higher than that at 3 months old (3M). Interestingly, we observed that PPP2R2A interference reduced the testosterone levels in cell culture medium, which is accompanied by a reduction in Leydig cell proliferation and an elevation in Leydig cell apoptosis. The level of reactive oxygen species (ROS) in cells increased significantly, while the mitochondrial membrane potential (ΔΨm) decreased significantly after PPP2R2A deletion. Meanwhile, the mitochondrial mitotic protein DNM1L was significantly up-regulated, while the mitochondrial fusion proteins MFN1/2 and OPA1 were significantly down-regulated after PPP2R2A interference. Furthermore, PPP2R2A interference suppressed the AKT/mTOR signaling pathway. Taken together, our data indicated that PPP2R2A enhanced testosterone secretion, promoted cell proliferation, and inhibited cell apoptosis in vitro, all of which were associated with the AKT/mTOR signaling pathway.