Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Xiao-Xiao Qiu x
Clear All Modify Search
Free access

Ming-Qing Li, Xiao-Fan Hou, Shi-Jian Lv, Yu-Han Meng, Xiao-Qiu Wang, Chuan-Ling Tang and Da-Jin Li

Tetraspanin CD82 is a wide-spectrum tumor metastasis suppressor that inhibits motility and invasiveness of cancer cells. Endometriosis is a benign gynecological disorder, but appears malignant behaviors including invasion, ectopic implantation and recurrence. This study is to elucidate the role of CD82 expression regulation in the pathogenesis of endometriosis. The short interfering RNA silence was established to analyze the roles of CD82, chemokine CCL2, and its receptor CCR2 in the invasiveness of endometrial stromal cells (ESCs). We have found that the mRNA and protein levels of CD82 in the primary normal ESCs from endometrium without endometriosis are significantly higher than that of the primary ESCs from eutopic endometrium and ectopic tissue. CD82 inhibits the invasiveness of ESCs by downregulating CCL2 secretion and CCR2 expression via mitogen-activated protein kinase (MAPK) and integrinβ1 signal pathway, and in turn upregulating the expression of TIMP1 and TIMP2 in an autocrine manner. The combination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) with 17β-estradiol can promote the invasion of ESCs via suppressing CD82 expression and stimulating CCL2 secretion and CCR2 expression, and the enhanced interaction of CCL2–CCR2 recruits more macrophages into the ectopic milieu in a paracrine manner, which further downregulates CD82 expression in the ectopic ESCs. Our study has demonstrated for the first time that the abnormal lower CD82 expression in ESCs induced by TCDD and estrogen may be an important molecular basis of endometriosis pathogenesis through enhancing the CCL2 secretion and CCR2 expression and the invasion of ESCs via MAPK and integrinβ1 signal pathway.

Free access

Xiao-Qiu Wang, Jing Yu, Xue-Zhen Luo, Ying-Li Shi, Yun Wang, Ling Wang and Da-Jin Li

RANTES (C–C chemokine, regulated on activation, normal T cell expressed and secreted) is involved in progression of endometriosis, but the precise mechanism is understood inadequately. This study is to elucidate the roles of RANTES in macrophage recruitment and tolerance in the endometriotic milieu. The expression of RANTES was analyzed by immunohistochemistry. The cell co-cultures were applied to simulate the endometriotic milieu to investigate the regulation of RANTES secretion and its receptor CCR1 expression. Transwell migration assay was used for chemotaxis of U937 cells (macrophage line) to endometrial stromal cells (ESCs) and/or human pelvic mesothelial cells. The expression of CCR1 was analyzed by RT-PCR and qPCR in transcription and by western blot in translation respectively. Concentrations of RANTES, IL10, and IL12p70 were determined by ELISA. The phenotype of U937 cells and apoptosis of ESCs were analyzed by flow cytometry. We have found that the expression of RANTES is significantly higher in the endometriotic tissue and eutopic endometrium than that of the normal endometrium without endometriosis. The combination of 17β-estradiol and dioxin 2,3,7,8-tetrachlorodibenzo-p-dioxin increases significantly RANTES secretion in the endometriosis-associated cell co-culture which can recruit more macrophages, upregulate CCR1 expression, and induce tolerant phenotype, which inhibits the apoptosis of ESC in the milieu. In conclusion, the higher levels of RANTES in the ectopic milieu facilitate the onset and progression of endometriosis by macrophage recruitment and tolerance that in turn inhibits apoptosis and enhances growth of ESC.

Open access

Kamran Ullah, Tanzil Ur Rahman, Hai-Tao Pan, Meng-Xi Guo, Xin-Yan Dong, Juan Liu, Lu-Yang Jin, Yi Cheng, Zhang-Hong Ke, Jun Ren, Xian-Hua Lin, Xiao-Xiao Qiu, Ting-Ting Wang, He-Feng Huang and Jian-Zhong Sheng

Previous studies have shown that increasing estradiol concentrations had a toxic effect on the embryo and were deleterious to embryo adhesion. In this study, we evaluated the physiological impact of estradiol concentrations on endometrial cells to reveal that serum estradiol levels probably targeted the endometrium in controlled ovarian hyperstimulation (COH) protocols. An attachment model of human choriocarcinoma (JAr) cell spheroids to receptive-phase endometrial epithelial cells and Ishikawa cells treated with different estradiol (10−9 M or 10−7 M) concentrations was developed. Differentially expressed protein profiling of the Ishikawa cells was performed by proteomic analysis. Estradiol at 10−7 M demonstrated a high attachment rate of JAr spheroids to the endometrial cell monolayers. Using iTRAQ coupled with LC–MS/MS, we identified 45 differentially expressed proteins containing 43 significantly upregulated and 2 downregulated proteins in Ishikawa cells treated with 10−7 M estradiol. Differential expression of C3, plasminogen and kininogen-1 by Western blot confirmed the proteomic results. C3, plasminogen and kininogen-1 localization in human receptive endometrial luminal epithelium highlighted the key proteins as possible targets for endometrial receptivity and interception. Ingenuity pathway analysis of differentially expressed proteins exhibited a variety of signaling pathways, including LXR/RXR activation pathway and acute-phase response signaling and upstream regulators (TNF, IL6, Hmgn3 and miR-140-3p) associated with endometrial receptivity. The observed estrogenic effect on differential proteome dynamics in Ishikawa cells indicates that the human endometrium is the probable target for serum estradiol levels in COH cycles. The findings are also important for future functional studies with the identified proteins that may influence embryo implantation.