Search Results

You are looking at 1 - 2 of 2 items for

  • Author: X Han x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

S G Matthews, X Han, F Lu, and J R G Challis

ABSTRACT

Ontogenic changes in pituitary pro-opiomelanocortin (POMC) mRNA and prolactin (PRL) mRNA were examined during gestation and early neonatal life using in situ hybridization histochemistry. Pituitaries were harvested from fetuses at days 60–80, 100–120, 135–140 and 142–143 of gestation and at term, and from lambs at days 1–7 and 30–60 of age and adults.

POMC mRNA, present by day 60, rose during mid- and late gestation. Concurrently there was a change in corticotroph distribution, resulting in a relatively greater quantity of POMC mRNA at the base of the pars distalis. At term, there was a significant (P<0·05) further elevation of POMC mRNA. POMC mRNA levels remained high in the newborn lamb but decreased in the adult. Cells in the pars intermedia expressed large amounts of POMC mRNA early in fetal life and this pattern persisted throughout gestation and into the neonatal period. Changes in the expression of the POMC gene correlated closely with the presence of immunoreactive (ir)ACTH in the pituitary; in fetuses the proportion of irACTH-positive cells rose to 10% of pars distalis cells by day 100 and did not change significantly thereafter. The lactotrophs contained PRL mRNA by day 60, and the quantity increased towards parturition (P<0·05). PRL mRNA subsequently decreased in the neonate, but rose as the lamb matured.

These results indicate that in the fetal pituitary: (1) the POMC gene is highly expressed during gestation in both the pars distalis and the pars intermedia, (2) changes in the amounts of POMC mRNA and PRL mRNA in the pars distalis correlate with the distribution of irACTH and irPRL respectively, and (3) POMC mRNA is distributed primarily in the inferior aspect of the pars distalis, and in this region its quantity is highest immediately prior to parturition.

Free access

Y-L Zhao, W-D Han, Q Li, Y-M Mu, X-C Lu, L Yu, H-J Song, X Li, J-M Lu, and C-Y Pan

LRP16 gene expression is induced by 17-βestradiol (E2) via estrogen receptor alpha (ERα) in MCF-7 human breast cancer cells. A previous study also demonstrated that ectopic expression of LRP16 gene promoted MCF-7 cell proliferation. To explore the mechanism of hormone-induced LRP16 gene expression, the LRP16 gene promoter region (−2600 to −24 bp upstream of the LRP16 gene translation starting site) was analyzed in the present study by using different 5′-truncated constructs, and a luciferase reporter. The 5′-flanking sequence of −676 to −24 bp (pGL3-S5) was found to be E2-responsive. After exchange of the fragment from −213 to −24 bp with the TK gene proximal promoter region in pGL3-S5, E2 still induced reporter gene activity in MCF-7 and HeLa cells. Sequence analysis showed that the pGL3-S6 (−676 to −214) sequence contains two motifs that may contribute to E2-induced transactivation; namely, an estrogen-responsive element (ERE) half-site/Sp1 at −246 to −227 bp and an E-box site at −225 to −219 bp. Further deletion and mutation analysis of these two motifs indicated that both the 1/2 ERE and Sp1 binding sites were required for E2 action, while E-box deletion did not affect the luciferase activity in MCF-7 and HeLa cells. The results of gel mobility shift and chromatin immunoprecipitation assays confirmed that both ERαand Sp1 were required for hormone-induced transactivation, which involved both ERαand Sp1 directly binding to DNA. Taken together, these findings suggest that ERαand Sp1 play a role in activation of the human LRP16 gene promoter.