Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Wei Cao x
Clear All Modify Search
Restricted access

Yousheng Xu, Yongshun Wang, Jingjin Liu, Wei Cao, Lili Li, Hongwei Du, Enbo Zhan, Ruoxi Zhang, Huimin Liu, Maoen Xu, Tao Chen, Yilin Qu and Bo Yu

The prevalence of obesity is dramatic increased and strongly associated with cardiovascular disease. Adipokines, secreted from adipose tissues, are critical risk factors for the development of cardiomyopathy. Present study aimed to investigate the pathophysiological role of autotaxin in obesity-related cardiomyopathy. In high fat diet-fed mice, autotaxin was mainly synthesized and secreted from adipocytes. The increased accumulation of cardiac autotaxin was positively associated with cardiac dysfunction in obese mice. Interestingly, specific blockage of adipose tissue autotaxin effectively protected against high fat diet-induced cardiac structural disorders, left ventricular hypertrophy and dysfunction. Inhibition of autotaxin further improved high fat diet-induced cardiac fibrosis and mitochondrial dysfunction, including improvement of mitochondrial structure, mass and activities. Our findings demonstrated intervention of adipose tissue biology could influence cardiac modification in obese mice, and adipocyte-derived autotaxin was a potential diagnostic marker and therapeutic target for obesity-related cardiomyopathy.

Restricted access

Sufang Chen, Wei Wei, Minjie Chen, Xiaobo Qin, Lianglin Qiu, Li Zhang, Yuhao Zhang, Qi Cao and Zhekang Ying

Numerous studies have implicated tumor necrosis factor α (TNFα) in the pathogenesis of type 2 diabetes. However, the role of its primary receptor, TNF receptor 1 (TNFR1), in homeostatic regulation of glucose metabolism is still controversial. In addition to TNFα, lymphotoxin α (LTα) binds to and activates TNFR1. Thus, TNFα and LTα together are known as TNF. To delineate the role of TNF signaling in glucose homeostasis, the present study ascertained how TNF signaling deficiency affects major regulatory components of glucose homeostasis. To this end, normal diet-fed male TNFR1-deficient mice (TNFR1−/−), TNFα/LTα/LTβ triple-deficient mice (TNF/LT∆3) and their littermate controls were subjected to intraperitoneal glucose tolerance test, insulin tolerance test and oral glucose tolerance test. The present results showed that TNFR1−/− and TNF/LT∆3 mice vs their controls had comparable body weight, tolerance to intraperitoneal glucose and sensitivity to insulin. However, their tolerance to oral glucose was significantly increased. Additionally, glucose-induced insulin secretion assessments revealed that TNFR1 or TNF/LT deficiency significantly increased oral but not intraperitoneal glucose-induced insulin secretion. Consistently, qPCR and immunohistochemistry analyses showed that TNFR1−/− and TNF/LT∆3 mice vs their controls had significantly increased ileal expression of glucagon-like peptide-1 (GLP-1), one of the primary incretins. Their oral glucose-induced secretion of GLP-1 was also significantly increased. These data collectively suggest that physiological TNF signaling regulates glucose metabolism primarily through effects on GLP-1 expression and secretion and subsequently insulin secretion.