Search Results

You are looking at 1 - 2 of 2 items for

  • Author: W Vale x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Lykke Blaabjerg, Gitte L Christensen, Masahito Matsumoto, Talitha van der Meulen, Mark O Huising, Nils Billestrup, and Wylie W Vale

During the development of diabetes β-cells are exposed to elevated concentrations of proinflammatory cytokines, TNFα and IL1β, which in vitro induce β-cell death. The class B G-protein-coupled receptors (GPCRs): corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 are expressed in pancreatic islets. As downstream signaling by other class B GPCRs can protect against cytokine-induced β-cell apoptosis, we evaluated the protective potential of CRFR activation in β-cells in a pro-inflammatory setting. CRFR1/CRFR2 ligands activated AKT and CRFR1 signaling and reduced apoptosis in human islets. In rat and mouse insulin-secreting cell lines (INS-1 and MIN6), CRFR1 agonists upregulated insulin receptor substrate 2 (IRS2) expression, increased AKT activation, counteracted the cytokine-mediated decrease in BAD phosphorylation, and inhibited apoptosis. The anti-apoptotic signaling was dependent on prolonged exposure to corticotropin-releasing factor family peptides and followed PKA-mediated IRS2 upregulation. This indicates that CRFR signaling counteracts proinflammatory cytokine-mediated apoptotic pathways through upregulation of survival signaling in β-cells. Interestingly, CRFR signaling also counteracted basal apoptosis in both cultured INS-1 cells and intact human islets.

Restricted access

P J Lowry, S C Koerber, R J Woods, S Baigent, S Sutton, D P Behan, W Vale, and J Rivier

ABSTRACT

As the association of corticotrophin-releasing factor (CRF) with its binding protein (BP) to form a dimer complex (CRF2/BP2) appears to be dependent on the nature of the ligand we have compared the circular dichroism difference spectra after association of the BP with ovine (o) CRF, human (h) CRF and the α-helical CRF(9–41) antagonist. All three ligands caused a negative change in molar ellipticity above 210 nm, with oCRF having the least and hCRF the greatest effect. Below 210 nm there was a marked divergence of difference spectra, with the reaction with the natural peptides, hCRF and oCRF, resulting in a positive change in ellipticity, whilst that with the antagonist produced a negative change. In view of the BP spectrum indicating predominantly β-sheet and the peptides showing mainly α-helix these results were interpreted as the changes above 210 nm being due to dimerization and below 210 nm to a change in the conformation of ligand on binding. The opposite change in α-helicity of the antagonist observed on binding compared with the two natural CRF peptides could have fundamental pharmacological implications.