Search Results

You are looking at 1 - 2 of 2 items for

  • Author: W J Malaisse x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

V. Leclercq-Meyer, J. Marchand, A. Sener, F. Blachier, and W. J. Malaisse

ABSTRACT

l-Leucine and 2-ketoisocaproate stimulated insulin release from perifused rat tumoral islet cells (RINm5F line). The secretory response coincided with an increase in the intracellular ATP/ADP ratio, a stimulation of 45Ca outflow from cells perifused in the presence of extracellular Ca2+, and an increase in 32P efflux from cells prelabelled with radioactive orthophosphate. In contrast to d-glucose, however, l-leucine or 2-ketoisocaproate failed to decrease 86Rb outflow, to inhibit 45Ca outflow from cells perifused in the absence of Ca2+ and to enhance the labelling of inositol-containing phospholipids in cells exposed to myo-[2-3H]inositol. These findings suggest that d-glucose, l-leucine and 2-ketoisocaproate exert dissimilar effects on the subcellular distribution of adenine nucleotides and/or 86Rb. The nonmetabolized analogue of l-leucine, 2-aminobicyclo-[2.2.1]heptane-2-carboxylic acid (BCH), also caused an initial stimulation of insulin release and 32P efflux, but this was soon followed by a severe and irreversible inhibition of insulin output, associated with a permanent enhancement of 86Rb outflow. The dual ionic and secretory response to BCH is interpreted in the light of its dual effect on the catabolism of endogenous amino and fatty acids, and raises the view that BCH could be used to interfere with the function of insulinoma cells.

Restricted access

J Rasschaert, M-H Giroix, I Conget, D Mercan, V Leclercq-Meyer, A Sener, B Portha, and W J Malaisse

ABSTRACT

This study aimed to compare the metabolic and secretory responses of pancreatic islets from animals with non-insulin-dependent diabetes to d-glucose with the effects of the methyl esters of succinic acid (SME) and glutamic acid (GME). The insulin secretory response to d-glucose was impaired in islets from rats with diabetes which was either inherited (Goto—Kakizaki (GK) rats) or acquired (streptozotocin-treated (STZ) rats). This coincided with a preferential alteration of oxidative relative to total glycolysis in intact islets and a selective defect of FAD-linked mitochondrial glycerophosphate dehydrogenase (m-GDH) in islet homogenates. This enzymatic defect was also found in purified B cells from STZ rats. It contrasted both with unaltered activities of glutamate dehydrogenase and succinate dehydrogenase in the islets of diabetic animals and with a normal or even increased activity of m-GDH in the livers of GK and STZ rats. The oxidation of [1,4-14C]SME and [U-14C]GME appeared decreased in islets of GK or STZ animals when compared with control rats, but no significant difference between control and diabetic rats was observed when the oxidative data were expressed relative to the rate of [U-14C]GME hydrolysis. Nevertheless, the absolute values for insulin release evoked by a non-metabolized analogue of l-leucine (BCH), by SME and by the association of BCH with either SME or GME were invariably lower in islets of GK and STZ rats than in those of control animals. These findings indicate that the enzymatic and metabolic situation in islets of GK and STZ rats could allow the expression of the insulinotropic potential of SME and GME, even if their immediate secretory effects are impaired in the islets of these diabetic animals.