Search Results

You are looking at 1 - 1 of 1 items for

  • Author: W E Rainey x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

A J Conley, W E Rainey, and J I Mason


This study examined fetal steroidogenic enzyme expression and function during pregnancy in the pig. Northern and Western analyses were performed to detect the cytochrome P450 enzyme 17α-hydroxylase/17–20 lyase (P450c17) and that for cholesterol side-chain cleavage (P450scc), as well as 3β-hydroxysteroid dehydrogenase (3β-HSD) expression in several porcine fetal tissues. The data demonstrate higher steroidogenic enzyme expression in the fetal adrenal glands and testes than in the placenta at all stages of development examined. Although steroidogenic enzyme expression was maintained throughout gestation in both the fetal adrenals and the testes, adrenal P450c17 expression was higher in the early and late stages when compared with the intermediate stages of fetal development. The stimulation of fetal adrenal steroidogenic enzyme expression in the later stage fetuses was accompanied by increased expression of P450c17 in both the fetal testes and placenta. The expression of 3β-HSD by porcine fetal testes was low compared with that of the fetal adrenal gland at all stages of development. Adrenal explants and cultured cells secreted cortisol and androstenedione but much lower amounts of corticosterone, dehydroepiandrosterone and aldosterone. Secretion of cortisol and androstenedione by adrenal explants was maintained by ACTH for 5 days of culture but declined in controls. In cultured porcine fetal adrenal cells, ACTH and angiotensin II stimulated the secretion of multiple steroids. Porcine fetal testis explants and cultured cells secreted testosterone, dehydroepiandrosterone and androstenedione, but were only moderately responsive to trophic stimulation by LH. In general, the data suggest that the fetal adrenal glands and the fetal testes have the potential to contribute significantly to the production of steroids during pregnancy in pigs.