Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Viral Chikani x
  • Refine by access: All content x
Clear All Modify Search
Viral Chikani Department of Diabetes and Endocrinology, Centres for Health Research, Princess Alexandra Hospital; The Translational Research Institute and the University of Queensland, 37 Kent Street, Wooloongabba, Brisbane, Queensland 4102, Australia

Search for other papers by Viral Chikani in
Google Scholar
PubMed
Close
and
Ken K Y Ho Department of Diabetes and Endocrinology, Centres for Health Research, Princess Alexandra Hospital; The Translational Research Institute and the University of Queensland, 37 Kent Street, Wooloongabba, Brisbane, Queensland 4102, Australia

Search for other papers by Ken K Y Ho in
Google Scholar
PubMed
Close

Skeletal muscle is a target tissue of GH. Based on its anabolic properties, it is widely accepted that GH enhances muscle performance in sports and muscle function in the elderly. This paper critically reviews information on the effects of GH on muscle function covering structure, protein metabolism, the role of IGF1 mediation, bioenergetics and performance drawn from molecular, cellular and physiological studies on animals and humans. GH increases muscle strength by enhancing muscle mass without affecting contractile force or fibre composition type. GH stimulates whole-body protein accretion with protein synthesis occurring in muscular and extra-muscular sites. The energy required to power muscle function is derived from a continuum of anaerobic and aerobic sources. Molecular and functional studies provide evidence that GH stimulates the anaerobic and suppresses the aerobic energy system, in turn affecting power-based functional measures in a time-dependent manner. GH exerts complex multi-system effects on skeletal muscle function in part mediated by the IGF system.

Free access