Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Ting Yan x
  • All content x
Clear All Modify Search
Restricted access

Ting Yan, Wangwang Qiu, Jianlu Song, Youben Fan, and Zhili Yang

The diagnosis and treatment of recurrence and metastasis in papillary thyroid carcinoma (PTC) are still clinical challenges. One of the key factors is the lack of specific diagnostic markers and therapeutic targets for recurrence and metastasis. Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful approach to find specific biomarkers by dissecting expression profiling in human cancers at the resolution of individual cells. Here, we investigated cell profiles of the primary tumor and lymph node metastasis and paracancerous normal tissues in one PTC patient using scRNA-seq, and compared individual cell gene expression differences. The transcriptomes of 11,805 single cells were profiled, and malignant cells exhibited a profound transcriptional overlap between primary and metastatic lesions, but there were differences in the composition and quantity of non-malignant cells. ARHGAP36 was one of the genes that were highly expressed in almost all of the primary and metastatic malignant cells without non-malignant or normal follicular cells and was then confirmed by immunostaining in a sample cohort. Compared with the paracancerous normal tissue, the expression of ARHGAP36 in primary and metastatic carcinoma tissues was significantly higher as assayed by qRT-PCR. ARHGAP36 knockdown significantly inhibited the proliferation and migration of PTC cells in vitro and involved several proliferation and migration-associated signaling pathways by RNA seq. Our study demonstrated that ARHGAP36 is exclusively expressed in the malignant cells of primary PTC, as well as metastatic lesions, and regulates their proliferation and migration, meaning it can be used as a potential diagnostic marker and therapeutic target molecule.

Open access

Kamran Ullah, Tanzil Ur Rahman, Hai-Tao Pan, Meng-Xi Guo, Xin-Yan Dong, Juan Liu, Lu-Yang Jin, Yi Cheng, Zhang-Hong Ke, Jun Ren, Xian-Hua Lin, Xiao-Xiao Qiu, Ting-Ting Wang, He-Feng Huang, and Jian-Zhong Sheng

Previous studies have shown that increasing estradiol concentrations had a toxic effect on the embryo and were deleterious to embryo adhesion. In this study, we evaluated the physiological impact of estradiol concentrations on endometrial cells to reveal that serum estradiol levels probably targeted the endometrium in controlled ovarian hyperstimulation (COH) protocols. An attachment model of human choriocarcinoma (JAr) cell spheroids to receptive-phase endometrial epithelial cells and Ishikawa cells treated with different estradiol (10−9 M or 10−7 M) concentrations was developed. Differentially expressed protein profiling of the Ishikawa cells was performed by proteomic analysis. Estradiol at 10−7 M demonstrated a high attachment rate of JAr spheroids to the endometrial cell monolayers. Using iTRAQ coupled with LC–MS/MS, we identified 45 differentially expressed proteins containing 43 significantly upregulated and 2 downregulated proteins in Ishikawa cells treated with 10−7 M estradiol. Differential expression of C3, plasminogen and kininogen-1 by Western blot confirmed the proteomic results. C3, plasminogen and kininogen-1 localization in human receptive endometrial luminal epithelium highlighted the key proteins as possible targets for endometrial receptivity and interception. Ingenuity pathway analysis of differentially expressed proteins exhibited a variety of signaling pathways, including LXR/RXR activation pathway and acute-phase response signaling and upstream regulators (TNF, IL6, Hmgn3 and miR-140-3p) associated with endometrial receptivity. The observed estrogenic effect on differential proteome dynamics in Ishikawa cells indicates that the human endometrium is the probable target for serum estradiol levels in COH cycles. The findings are also important for future functional studies with the identified proteins that may influence embryo implantation.