Search Results

You are looking at 1 - 2 of 2 items for

  • Author: T Kitahashi x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

M Higa, T Kitahashi, Y Sasaki, H Okada, and H Ando

Two types of genes encode salmon gonadotropin-releasing hormone (sGnRH), which is thought to act on both sexual maturation and reproductive behavior, in salmonids. We characterized the two sGnRH genes (sGnRH-I and -II) and their upstream regions in masu salmon, Oncorhynchus masou, since such information is a prerequisite for molecular approaches to salmon reproduction. The two genes have similar exon-intron structures composed of four exons and three introns. Sequence analyses of the two genes showed that coding regions are highly conserved, but upstream regions are distinctively divergent. In the upstream regions, only the sGnRH-II gene has a large palindromic sequence, which has been proposed to be involved in control of transcription via estrogen receptors. In contrast, the sGnRH-I gene is missing the large palindromic sequence, but has three distinct palindromes in the upstream region. These results may suggest divergent transcription regulatory mechanisms between the two sGnRH genes in masu salmon. The differences in the upstream regions of sGnRH genes in Atlantic salmon (Salmo salar), sockeye salmon (Oncorhynchus nerka) and masu salmon are discussed with respect to the evolution of sGnRH genes in salmonid fish.

Free access

S Taniyama, T Kitahashi, H Ando, M Ban, H Ueda, and A Urano

Changes in the levels of pituitary mRNAs encoding GH, prolactin (PRL) and somatolactin (SL) were determined in pre-spawning chum salmon (Oncorhynchus keta) caught at a few key points along their homing pathway in 1994 and 1995. Furthermore, we analyzed relationships between expression of pituitary-specific POU homeodomain transcription factor (Pit-1/GHF-1) and GH/PRL/SL family genes. In 1994, seawater (SW) fish and matured fresh-water (FW) fish were sequentially captured at two points along their homing pathway, the coast and the hatchery. In addition to these two points, maturing FW fish were captured at the intermediate of the two points in 1995. The levels of hormonal mRNAs were determined by a quantitative dot blot analysis using single-stranded sense DNA as the standard. Relative levels of Pit-1/GHF-1 mRNAs were estimated by Northern blot analysis. In 1994, the levels of GH/PRL/SL family mRNAs except for PRL mRNA in the male FW fish were 1.8-4 times higher than those in the SW fish. In 1995, the level of PRL mRNA was somewhat sharply elevated in the maturing FW fish soon after entry into the FW environment, while that of SL mRNA was gradually increased during upstream migration from the coast to the hatchery. The levels of 3 kb Pit-1/GHF-1 mRNA in the FW fish were higher than those in the SW fish in both 1994 and 1995. The present results indicate that expression of genes for the GH/PRL/SL family and Pit-1/GHF-1 is coincidentally enhanced in homing chum salmon. Moreover, the present study suggests that expression of the SL gene is elevated with sexual maturation, whereas that of PRL gene is elevated with osmotic change during the final stages of spawning migration.