ABSTRACT
Islet amyloid polypeptide (IAPP) in the pancreas of the spontaneously diabetic (BB) Wistar rat was examined by radioimmunoassay, and IAPP mRNA levels were determined by Northern blotting. IAPP-like immunoreactivity in the diabetic rat pancreas was found to be significantly depleted compared with control (non-diabetic) BB rats (85·9±5 pmol/g in control rats, n = 8, vs 8·97 ± 0·9 pmol/g in diabetic rats, n=5; mean ± s.e.m.). A similar change in insulin concentrations was found, although insulin was present in approximately 100-fold greater amounts than IAPP. Chromatography of the IAPP immunoreactivity revealed a single molecular form, corresponding to synthetic IAPP. Northern blot analysis of pancreatic RNA (n = 4) revealed that IAPP mRNA in the diabetic group was depleted to 22% of the signal intensity in the control group. Insulin mRNA was dramatically reduced to only 4% of the control group and, in contrast, somatostatin was relatively unaffected, with the diabetic group retaining 86% of signal compared with the controls.
This animal model of insulin-dependent diabetes results from severe autoimmune destruction of the β cell. The extremely low levels of both insulin and its messenger RNA are in agreement with this. These results demonstrate that this pathological state is also associated with a loss of IAPP from the pancreas. Insulin-dependent diabetes is associated with a range of metabolic disturbances. It is possible that the concomitant depletion of IAPP may be a contributory factor in exacerbating the condition.