Search Results
You are looking at 1 - 2 of 2 items for
- Author: S Matsuda x
- Refine by access: All content x
Search for other papers by HM Sheppard in
Google Scholar
PubMed
Search for other papers by S Matsuda in
Google Scholar
PubMed
Search for other papers by JC Harries in
Google Scholar
PubMed
Search for other papers by KB Kindle in
Google Scholar
PubMed
Search for other papers by DM Heery in
Google Scholar
PubMed
Steroid receptors activate transcription in yeast cells via interactions with endogenous coactivators and/or basal factors. We examined the effects of mutations in the ligand binding domain on the transcriptional activity of ERalpha in yeast. Our results show that mutations in Helix 3 (K366A) and Helix 12 (M547A, L548A) disrupt transcriptional activity of ERalpha in yeast, as previously observed in mammalian cells. However, replacement of a conserved tyrosine residue in Helix 12 with alanine or aspartate (Y541A and Y541D), which renders ERalpha constitutively active in mammalian cells, had only a weak stimulatory effect on ligand-independent reporter activation by ERalpha in yeast. Two-hybrid interaction experiments revealed that a Y541A mutant expressed in yeast was capable of ligand-independent binding to a mammalian coactivator, suggesting that there is a subtle difference in how this mutant interacts with mammalian and yeast cofactors. We also show that the ligand-dependent activities of ERalpha and progesterone receptor (PR) in yeast cells were strongly enhanced by the human p160 protein steroid receptor coactivator (SRC1), but not by CREB-Binding Protein (CBP) or the p300/CBP associated factor (P/CAF). Although the SRC1 activation domains AD1 and AD2 are functional in yeast, deletion of these sequences only partially impaired SRC1 coactivator function in this organism; this is in contrast to similar experiments in mammalian cells. Thus SRC1 sequences involved in recruitment of CBP/p300 and Co-Activator-Associated Arginine Methyltransferase (CARM-1) in mammalian cells are not essential for its function in yeast, suggesting that SRC1 operates via distinct mechanisms in yeast and mammalian cells.
Search for other papers by S Jesmin in
Google Scholar
PubMed
Search for other papers by C N Mowa in
Google Scholar
PubMed
Search for other papers by I Sakuma in
Google Scholar
PubMed
Search for other papers by N Matsuda in
Google Scholar
PubMed
Search for other papers by H Togashi in
Google Scholar
PubMed
Search for other papers by M Yoshioka in
Google Scholar
PubMed
Search for other papers by Y Hattori in
Google Scholar
PubMed
Search for other papers by A Kitabatake in
Google Scholar
PubMed
Although synthesis of estrogen by male gonads has been well documented for over half a century, it is only recently that the role of estrogen in male reproductive events has gained appreciation. We recently reported abundant expression of estrogen receptor (ER)-α and -β in different cell types of the rat penis, whose levels diminished with advancing age. The present study, which builds on data from the ER study, was designed to determine whether the penis is capable of generating its own local estrogen by examining evidence of the expression of aromatase, a microsomal enzymatic complex which irreversibly converts androgens to estrogens, using immunohistochemistry, Western blotting, in situ hybridization and real-time PCR analyses. Secondly, the effects of sex steroid hormones on penile aromatase were examined. Discrete aromatase immunoreactive cells were localized in primordial corpus cavernosum, corpus spongiosus and os penis, blood vessels and sensory corpuscle of glans penis. In situ hybridization signals corresponded with immunohistochemical findings. Western blot, enzyme immunoassay and real-time PCR analyses of rat penile samples revealed an age-dependent expression of aromatase and estrogen, with levels at week 1 almost resembling those of the ovary, but they decreased sharply by week 8, and decreased further by week 35. This expression pattern was strikingly similar to that of ER-α reported previously. Testosterone and diethylstilbesterol administered prenatally upregulate levels of aromatase mRNA and protein, and estrogen postnatally. Dihydrotestosterone upregulated aromatase mRNA and protein, but not estrogen. We conclude that estrogen acts via ER in a paracrine and/or autocrine manner to regulate penile events, particularly during development, and that estrogen synthesis is regulated by estrogen and androgens.