Search Results

You are looking at 1 - 1 of 1 items for

  • Author: S F Lunn x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

H M Fraser, S F Lunn, G M Cowen, and P T K Saunders


Localization of inhibin/activin subunit mRNAs within the macaque ovary from the immediate pre-ovulatory period of the menstrual cycle, when serum immunoreactive inhibin begins to rise, to day 9 of the luteal phase, when serum inhibin concentrations are maximal, was investigated using in-situ hybridization. Ovaries were studied on the day of the LH surge (day 0) and on days 2, 5, and 9 of the luteal phase by hybridizing frozen tissue sections with radio-labelled riboprobes specific to the inhibin/activin α-, βA-and βB-subunits. After autoradiographic exposure for 10 and 21 days, grain concentrations were quantified by image analysis. Moderate expression of α-, βA- and βB-subunit mRNA was present within the granulosa cells of the pre-ovulatory follicle (day 0). The granulosa-lutein cells of the corpora lutea expressed high levels of α-subunit at days 2, 5 and 9. mRNAs for βA and βB were detected at low but significant levels in all of the corpora lutea. All healthy antral follicles exhibited a high level of expression of βB-subunit mRNA in the granulosa cells. On day 2 after ovulation these follicles also expressed high α- and moderate βA-subunit mRNA. On day 9 the βB-inhibin mRNA in antral follicles was found in association with low expression of the other subunits. Small follicles in ovaries on day 2 expressed moderate α- and low levels of βB-subunit mRNA, while mRNA for βA was absent. α-subunit mRNA expression was present on day 5 while neither βA- nor βB-subunit mRNA was detected. On day 9 a proportion of small follicles expressed α- and βA-subunit mRNA. These results demonstrate that marked differences are present in the levels of expression of the three inhibin/activin subunit genes between follicles and the corpus luteum. The predominance of the βB-subunit mRNA within antral follicles would be consistent with the synthesis of activin. The predominance of the α-subunit combined with the low expression of the β-subunits in the corpus luteum suggests that both biologically active inhibin and free α-subunit are produced by the primate corpus luteum.