Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Ronald M Evans x
Clear All Modify Search
Open access

Yihong Wan and Ronald M Evans

The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is a key transcriptional regulator of both lipid metabolism and inflammation. The importance of PPARγ is accentuated by the widespread use of synthetic PPARγ agonists, thiazolidinediones (such as rosiglitazone), as drugs for insulin resistance and type II diabetes. Fractalkine (FKN) and FKN receptor (FR) play an important role in the immune responses by regulating leukocyte migration and adhesion to inflamed peripheral tissues. In this study, we have identified a novel link between PPARγ activation and FKN signaling. On one hand, the activation of PPARγ by rosiglitazone in macrophages not only represses the transcription of the FR gene, but also prevents the plasma membrane translocation of the FR protein. On the other hand, the activation of PPARγ by rosiglitazone in endothelial cells also impedes the nuclear export of FKN. Together, these data suggest that PPARγ activation represses FKN signaling. These findings indicate a previously unrecognized mechanism that may contribute to the anti-inflammatory effect of PPARγ.

Free access

Christopher E Wall, Ruth T Yu, Anne R Atkins, Michael Downes and Ronald M Evans

Endurance exercise can lead to systemic improvements in insulin sensitivity and metabolic homeostasis, and is an effective approach to combat metabolic diseases. Pharmacological compounds that recapitulate the beneficial effects of exercise, also known as ‘exercise mimetics’, have the potential to improve disease symptoms of metabolic syndrome. These drugs, which can increase energy expenditure, suppress hepatic gluconeogenesis, and induce insulin sensitization, have accordingly been highly scrutinized for their utility in treating metabolic diseases including diabetes. Nevertheless, the identity of an efficacious exercise mimetic still remains elusive. In this review, we highlight several nuclear receptors and cofactors that are putative molecular targets for exercise mimetics, and review recent studies that provide advancements in our mechanistic understanding of how exercise mimetics exert their beneficial effects. We also discuss evidence from clinical trials using these compounds in human subjects to evaluate their efficacy in treating diabetes.

Free access

Weiwei Fan, Annette R Atkins, Ruth T Yu, Michael Downes and Ronald M Evans

Free access

Weiwei Fan, Annette R Atkins, Ruth T Yu, Michael Downes and Ronald M Evans

Skeletal muscle is the largest organ in the human body and is the major site for energy expenditure. It exhibits remarkable plasticity in response to physiological stimuli such as exercise. Physical exercise remodels skeletal muscle and enhances its capability to burn calories, which has been shown to be beneficial for many clinical conditions including the metabolic syndrome and cancer. Nuclear receptors (NRs) comprise a class of transcription factors found only in metazoans that regulate major biological processes such as reproduction, development, and metabolism. Recent studies have demonstrated crucial roles for NRs and their co-regulators in the regulation of skeletal muscle energy metabolism and exercise-induced muscle remodeling. While nothing can fully replace exercise, development of exercise mimetics that enhance or even substitute for the beneficial effects of physical exercise would be of great benefit. The unique property of NRs that allows modulation by endogenous or synthetic ligands makes them bona fide therapeutic targets. In this review, we present an overview of the current understanding of the role of NRs and their co-regulators in skeletal muscle oxidative metabolism and summarize recent progress in the development of exercise mimetics that target NRs and their co-regulators.