Search Results

You are looking at 1 - 2 of 2 items for

  • Author: R Scott Heller x
Clear All Modify Search
Free access

Nils Wierup, Frank Sundler and R Scott Heller

The islets of Langerhans are key regulators of glucose homeostasis and have been known as a structure for almost one and a half centuries. During the twentieth century several different cell types were described in the islets of different species and at different developmental stages. Six cell types with identified hormonal product have been described so far by the use of histochemical staining methods, transmission electron microscopy, and immunohistochemistry. Thus, glucagon-producing α-cells, insulin-producing β-cells, somatostatin-producing δ-cells, pancreatic polypeptide-producing PP-cells, serotonin-producing enterochromaffin-cells, and gastrin-producing G-cells have all been found in the mammalian pancreas at least at some developmental stage. Species differences are at hand and age-related differences are also to be considered. Eleven years ago a novel cell type, the ghrelin cell, was discovered in the human islets. Subsequent studies have shown the presence of islet ghrelin cells in several animals, including mouse, rat, gerbils, and fish. The developmental regulation of ghrelin cells in the islets of mice has gained a lot of interest and several studies have added important pieces to the puzzle of molecular mechanisms and the genetic regulation that lead to differentiation into mature ghrelin cells. A body of evidence has shown that ghrelin is an insulinostatic hormone, and the potential for blockade of ghrelin signalling as a therapeutic avenue for type 2 diabetes is intriguing. Furthermore, ghrelin-expressing pancreatic tumours have been reported and ghrelin needs to be taken into account when diagnosing pancreatic tumours. In this review article, we summarise the knowledge about islet ghrelin cells obtained so far.

Free access

Andreas Petri, Jonas Ahnfelt-Rønne, Klaus Stensgaard Frederiksen, David George Edwards, Dennis Madsen, Palle Serup, Jan Fleckner and R Scott Heller

To understand the molecular mechanisms regulating pancreatic endocrine development and function, pancreatic gene expression was compared between Ngn3-deficient mice and littermate controls on embryonic days 13 and 15. Microarray analysis identified 504 genes with significant differences in expression. Fifty-two of these showed at least twofold reduction in Ngn3 knockouts compared to controls. Many of them were previously described to be involved in endocrine development and function. Among the genes not previously characterized were Rhomboid veinlet-like 4, genes involved in tetrahydrobiopterin biosynthesis and the Iroquois-type homeobox gene Irx1, the latter was selected for further investigation. In situ hybridisation demonstrated that two Iroquois genes, Irx1 and Irx2, were expressed in pancreatic endoderm of wild-type, but not Ngn3 mutant embryos. Furthermore, ectopic Ngn3 induced prominent Irx2 expression in chicken endoderm. Co-labelling established that Irx1 and Irx2 mRNA is located to glucagon-, but not insulin- or somatostatin-producing cells in mice and chicken. These data suggest that Irx1 and Irx2 serve an evolutionary conserved role in the regulation of α-cell-specific gene expression.