Search Results

You are looking at 1 - 2 of 2 items for

  • Author: R Jackson x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Hiroshi Nagasaki, Zhiwei Wang, Valerie R Jackson, Steven Lin, Hans-Peter Nothacker, and Olivier Civelli

Two glycoprotein hormone subunits, (glycoprotein hormone α2-subunit GPA2) and (glycoprotein hormone β5-subunit GPB5) have been recently discovered which, when expressed in vitro, heterodimerize to form a new hormone called thyrostimulin. Thyrostimulin activates the thyroid-stimulating hormone receptor (TSHR) and has thyrotropic activity. Immunological studies have indicated that both subunits co-localize in pituitary cells. To explore the function of thyrostimulin in the rat, we have cloned rat GPA2 and GPB5, reconstituted the heterodimers in vitro, and confirmed that rat thyrostimulin activates TSHR with an affinity similar to that of TSH. In situ hybridization of the pituitary showed that while GPA2 is expressed in the anterior lobe, GPB5 is not detected in any of the lobes. A quantitative analysis showed that the co-localization of GPA2 and GPB5 is restricted in the rat to the eye and the testis. We found that GPB5 can be detected in the pituitary by quantitative-PCR, but at extremely low levels, 2000-fold lower than TSH β-subunit (GPBtsh). Furthermore, the levels of GPB5 remain constant during the estrus cycle, while those of GPA2 vary. Finally, we found that none of the thyrostimulin subunits was induced by TRH in pituitary cell culture. These data point at the thyrostimulin system as being functionally different to the TSH system.

Restricted access

L J Millatt, R Jackson, B C Williams, and G StJ Whitley

ABSTRACT

Sodium nitroprusside spontaneously breaks down in solution to produce the vasodilator nitric oxide. In many cell types, this stimulates the cytosolic form of the enzyme guanylate cyclase, resulting in the elevation of cyclic GMP (cGMP). We have investigated the effect of sodium nitroprusside on the generation of cGMP in primary human thyrocytes and the SV40-transfected human thyroid cell line SGHTL-189. A dose-dependent increase in cGMP was obtained and the maximum response was observed with concentrations above 10 μm sodium nitroprusside in both cell types. Methylene blue (50 μm) had no significant effect on basal cGMP production but inhibited the effect of sodium nitroprusside at all concentrations tested, thus demonstrating that the effect was due to nitric oxide. Sodium nitroprusside had no effect on cyclic AMP (cAMP) production in these cells. TSH at 100 and 1000 μU/ml significantly stimulated the production of cAMP, but not that of cGMP, in primary human thyrocytes. Sodium nitroprusside had no significant effect on basal or TSH-stimulated triiodothyronine secretion in primary human thyrocytes. Forskolin (10 μm) significantly stimulated cAMP production in both primary thyrocytes and SGHTL-189 cells. Although forskolin had no significant effect on basal cGMP production, sodium nitroprusside-stimulated cGMP production was significantly reduced by forskolin. However, this inhibitory effect was not related to the production of cAMP.