Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Peng Jiang x
Clear All Modify Search
Free access

Chen Chen, Yongdong Peng, Yinglin Peng, Jian Peng and Siwen Jiang

MicroRNAs are endogenous, conserved, and non-coding small RNAs that function as post-transcriptional regulators of fat development and adipogenesis. Adipogenic marker genes, such as CCAAT/enhancer binding protein α (Cebpa), peroxisome proliferator-activated receptor γ (Pparg), adipocyte fatty acid binding protein (Ap2), and fatty acid synthase (Fas), are regarded as the essential transcriptional regulators of preadipocyte differentiation and lipid storage in mature adipocytes. Canonical Wnt/β-catenin signaling is recognized as a negative molecular switch during adipogenesis. In the present work we found that miR-135a-5p is markedly downregulated during the process of 3T3-L1 preadipocyte differentiation. Overexpression of miR-135a-5p impairs the expressions of adipogenic marker genes as well as lipid droplet accumulation and triglyceride content, indicating the importance of miR-135a-5p for adipogenic differentiation and adipogenesis. Further studies show that miR-135a-5p directly targets adenomatous polyposis coli (Apc), contributes to the translocation of β-catenin from cytoplasm to nucleus, and then activates the expressions of cyclin D1 (Ccnd1) and Cmyc, indicating the induction of canonical Wnt/β-catenin signaling. In addition, inhibition of APC with siRNA exhibits the same effects as overexpression of miR-135a-5p. Our findings demonstrate that miR-135a-5p suppresses 3T3-L1 preadipocyte differentiation and adipogenesis through the activation of canonical Wnt/β-catenin signaling by directly targeting Apc. Taken together, these results offer profound insights into the adipogenesis mechanism and the development of adipose tissue.

Restricted access

Yun-Qing Zhu, Yun Hu, Ke He, Na Li, Peng Jiang, Yu-Qin Pan, Hong Zhou and Xiao-Ming Mao

The follicles are the minimal functional unit of the thyroid; the morphology and the function of each follicle can vary significantly. However, the reasons for the apparent follicular heterogeneity are poorly understood. Some tissue-resident regulatory T cells (Tregs) have a special phenotype that expresses unique molecules related to local tissue and regulates the tissue functions. The aim of this study was to identify the phenotype of thyroid Tregs and the roles of thyroid Tregs in thyroid physiological regulation. Thyroid tissue and peripheral blood samples were obtained from patients with benign thyroid nodules. Microarray-based gene expression, flow cytometry, immunofluorescence microscopy, and functional analysis of thyroid Tregs were performed. Here, we demonstrated that human thyroid Tregs expressed high level of thyroglobulin (Tg), both gene and protein. The immunofluorescence microscopy of thyroid section showed that the FOXP3+Tg+ cells concentrated in some of the thyroid follicles, at the side of the thyroid follicle. The peripheral blood Tregs expressed minimal levels of Tg, and low levels of Tg could effectively induce peripheral blood Tregs to express Tg, which was independent of thyrotropin simulation. Furthermore, the Tg secreted freely from thyroid Tregs that negatively regulated some thyroid-related genes expression. Our results revealed that the thyroid Tregs was a distinct population of Tregs, which expressed high level of Tg. The thyroid Tregs regulate thyroid function by Tg that is paracrine from the cells.