Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Nao Yamaji x
Clear All Modify Search
Open access

Seisuke Sato, Hitomi Imachi, Jingya Lyu, Yumi Miyai, Kensaku Fukunaga, Tao Dong, Tomohiro Ibata, Toshihiro Kobayashi, Takuo Yoshimoto, Fumi Kikuchi, Kazuko Yonezaki, Nao Yamaji, Hisakazu Iwama and Koji Murao

ATP-binding cassette transporter A1 (ABCA1), a 254-kD membrane protein, is a key regulator of lipid efflux from cells to apolipoproteins. ABCA1 in pancreatic β-cells influences insulin secretion and cholesterol homeostasis. Tumor necrosis factor (TNF)-α is a pleiotropic cytokine that elicits a wide spectrum of physiological events, including cell proliferation, differentiation, and apoptosis, and is also known to decrease glucose-dependent insulin secretion in pancreatic islets. In the present study, we examined the role of TNF-α on ABCA1 expression in rat pancreatic islets and INS-1 cells. ABCA1 protein levels decreased in response to rising concentrations of TNF-α in pancreatic islets. Real-time polymerase chain reaction analysis showed a significant decrease in ABCA1 mRNA expression. In parallel with its effect on endogenous ABCA1 mRNA levels, TNF-α suppressed the activity of a reporter construct containing the ABCA1 promoter. This effect was abrogated by BIRB796, but not by SB203580 or PD98095. The constitutively active form of p38 mitogen-activated protein kinase (MAPK) γ suppressed ABCA1 promoter activity but not p38-MAPK (α, β), while a dominant-negative mutant of p38-MAPK γ blocked the effect of TNF-α on ABCA1 promoter activity. BIRB796 inhibited the increased cholesterol ester content induced by TNF-α. However, BIRB796 had no effect on the decreased insulin content nor ABCA1 suppression caused by TNF-α in INS-1 cells. In summary, TNF-α suppressed the expression of endogenous ABCA1 in pancreatic islets and INS-1 cells. These findings raise the possibility that TNF-α may affect insulin secretion by controlling ABCA1 expression.