Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Nan Chen x
Clear All Modify Search
Full access

Guojun Shi, Chen Sun, Weiqiong Gu, Minglan Yang, Xiaofang Zhang, Nan Zhai, Yan Lu, Zhijian Zhang, Peishun Shou, Zhiguo Zhang and Guang Ning

Recent reports have highlighted the roles of free fatty acid receptor 2 (FFAR2) in the regulation of metabolic and inflammatory processes. However, the potential function of FFAR2 in type 1 diabetes (T1D) remains unexplored. Our results indicated that the mRNA level of FFAR2 was upregulated in peripheral blood mononuclear cells of T1D patients. The human FFAR2 promoter regions were cloned, and luciferase reporter assays revealed that NFκB activation induced FFAR2 expression. Furthermore, we showed that FFAR2 activation by overexpression induced cell apoptosis through ERK signaling. Finally, treatment with the FFAR2 agonists acetate or phenylacetamide 1 attenuated the inflammatory response in multiple-low-dose streptozocin-induced diabetic mice, and improved the impaired glucose tolerance. These results indicate that FFAR2 may play a protective role by inducing apoptosis of infiltrated macrophage in the pancreas through its feedback upregulation and activation, thus, in turn, improving glucose homeostasis in diabetic mice. These findings highlight FFAR2 as a potential therapeutic target of T1D, representing a link between immune response and glucose homeostasis.

Full access

Shan Song, Duojun Qiu, Fengwei Luo, Jinying Wei, Ming Wu, Haijiang Wu, Chunyang Du, Yunxia Du, Yunzhuo Ren, Nan Chen, Huijun Duan and Yonghong Shi

Tubular injury is one of the crucial determinants of progressive renal failure in diabetic nephropathy (DN), while epithelial-to-mesenchymal transition (EMT) of tubular cells contributes to the accumulation of matrix protein in the diabetic kidney. Activation of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome leads to the maturation of interleukin (IL)-1B and is involved in the pathogenic mechanisms of diabetes. In this study, we explored the role of NLRP3 inflammasome on high glucose (HG) or transforming growth factor-B1 (TGFB1)-induced EMT in HK-2 cells. We evaluated EMT through the expression of α-smooth muscle actin (α-SMA) and E-cadherin as well as the induction of a myofibroblastic phenotype. Reactive oxygen species (ROS) was observed using the confocal microscopy. HG was shown to induce EMT at 48 h, which was blocked by NLRP3 silencing or antioxidant N-acetyl-L-cysteine (NAC). We found that NLRP3 interference could inhibit HG-induced ROS. Knockdown of NLRP3 could prevent HG-induced EMT by inhibiting the phosphorylation of SMAD3, P38 MAPK and ERK1/2. In addition, P38 MAPK and ERK1/2 might be involved in HG-induced NLRP3 inflammasome activation. Besides, TGFB1 induced the activation of NLRP3 inflammasome and the generation of ROS, which were blocked by NLRP3 interference or NAC. Tubular cells exposed to TGFB1 also underwent EMT, and this could be inhibited by NLRP3 shRNA or NAC. These results indicated that knockdown of NLRP3 antagonized HG-induced EMT by inhibiting ROS production, phosphorylation of SMAD3, P38MAPK and ERK1/2, highlighting NLRP3 as a potential therapy target for diabetic nephropathy.