Search Results

You are looking at 1 - 8 of 8 items for

  • Author: M. Nicol x
  • Refine by Access: All content x
Clear All Modify Search
Free access

L Nicol, McNeilly JR, M Stridsberg, and AS McNeilly

This study investigated the role of the secretory granule proteins, secretogranin II (SgII) and chromogranin A (CgA), in the differential secretion of FSH and LH from LbetaT2 mouse gonadotroph cells. Exogenous activin, which synergises with GnRH, is essential for the release of FSH from these cells, but also has stimulatory effects on LH and enhances GnRH-induced LH secretion. Two experiments are reported. In experiment 1, cultures were supplemented with activin (0-50 ng/ml), with and without a daily 1 h treatment of 10 nM GnRH, for 3 days. Protein secretion and mRNA levels were measured. In experiment 2, cells were treated with activin (50 ng/ml) alone, a daily 1 h treatment of 10 nM GnRH, or a combination of both for 6 days. In addition, cells exposed to activin+GnRH for 3 days were subsequently left untreated or given activin or GnRH alone for a further 3 days for comparison with cells maintained in activin+GnRH for 6 days. Protein secretion, intracellular protein and mRNA levels were measured. FSH secretion was stimulated, dose dependently, by activin and this effect increased synergistically in the presence of GnRH. The close correlation between secreted and intracellular FSH and FSHbeta mRNA levels was maintained in cells that had undergone treatment withdrawal after previous exposure to activin+GnRH, but there was no correlation between FSH and the granins. These results are consistent with the view that FSH released in response to activin/GnRH is constitutively secreted via a granin-independent pathway. SgII secretion mirrored the GnRH-induced secretion of LH, but was unaffected by activin, which stimulated LH secretion and had a detrimental effect on CgA mRNA transcription. This confirms previous observations that the LH released in response to GnRH is co-released with SgII via a regulated, granin-dependent pathway, and, in addition, suggests that activin may stimulate LH secretion through a constitutive, granin-independent pathway.

Restricted access

C. Massart, C. Le Tellier, Y. Mallédant, G. Leclech, and M. Nicol

ABSTRACT

It is well known that some volatile anaesthetic drugs, such as halothane and isoflurane, alter the functions of the human thyroid gland, but the action of other anaesthetic drugs, such as thiopental, midazolam and ketamine, on thyroid function is still unknown. We have investigated the effects of these three drugs on the functional properties of human thyrocytes cultured in monolayers or follicles and stimulated by TSH. Thiopental, midazolam and ketamine induced total suppression or a partial reduction, depending on the dose administered, of cyclic AMP (cAMP), follicular thyroglobulin (Tg) and free tri-iodothyronine (FT3) production. In contrast, free thyroxine levels increased in the medium of thyrocytes cultured as follicles. Small doses of the drugs did not affect thyrocyte production. The inhibiting effect of thiopental, midazolam and ketamine on Tg and FT3 production seems to result from the inhibition of cAMP production and 5′-deiodinase.

Restricted access

S. W. Walker, M. W. J. Strachan, M. Nicol, B. C. Williams, and I. M. Bird

ABSTRACT

The effects of angiotensin II (AII), acetylcholine and vasopressin on the intracellular concentration of Ca2+ have been little studied in adrenocortical cells from the zona fasciculata/reticularis (ZFR).

Primary cultures of bovine ZFR cells maintained in suspension culture for 72 h produce cortisol in response to AII (0·1 μm), acetylcholine (0·1 mm) and vasopressin (1 μm). This response is accompanied by a breakdown of membrane phosphoinositides from [3H]inositol-prelabelled cells.

Using cells loaded with the Ca2+ indicator fura-2, the intracellular concentration of Ca2+ was measured in response to increasing doses of all three agonists and found to increase in a graded fashion in each case. The basal intracellular concentration of Ca2+ was 75±3 nm (mean±s.e.m., n=52), rising to a maximum 1·82±0·14-fold (n=6) for AII (0·1 μm), 1·35±0·05-fold (n=7) for acetylcholine (0·1 mm) and 1·27±0·10-fold (n=6) for vasopressin (1 μm).

In the case of AII and acetylcholine, agonists were added sequentially in medium of normal extracellular Ca2+ concentration (1·2 mm) or in medium in which the Ca2+ concentration was buffered to approximate to the intracellular concentration of Ca2+ (75–100 nm). Evidence was thereby obtained that both AII and acetylcholine mobilize a common intracellular pool of Ca2+.

Our findings suggest that these three agonists, all of which stimulate phospholipase C, increase intracellular Ca2+ through a mechanism which depends, at least in part, on the release of Ca2+ from a common intracellular pool.

Restricted access

N. Hanley, B. C. Williams, M. Nicol, I. M. Bird, and S. W. Walker

ABSTRACT

Using tritiated-thymidine incorporation as a measure of cell growth, interleukin-1β stimulated the growth of bovine zona fasciculata/reticularis adrenocortical cells after 72h in primary culture. Within the range of 10–1000pg/ml, interleukin-1β produced over 40% of angiotensin II-stimulated [3H]thymidine incorporation (P<0.005 compared with basal for 10pg/ml and 1000pg/ml; P<0.05 for 100pg/ml; two-tailed unpaired Student's t-test). Interleukin-1β did not directly stimulate cortisol secretion.

By stimulating adrenocortical growth, the increase in interleukin-1 during fever provides a potential mechanism for chronically raising glucocorticoid output. This study is the first demonstration of a long-term effect involving interleukin-1β on the adrenal cortex.

Restricted access

I. M. Bird, M. Nicol, B. C. Williams, and S. W. Walker

ABSTRACT

Cells isolated from the zona fasciculata/reticularis (ZFR) of the bovine adrenal cortex and maintained in culture were found to secrete cortisol in response to vasopressin stimulation. The increased cortisol secretion was dose dependent, with a threshold response at 1 nm and a maximal response (1·68-fold over basal) at 0·1 μm. In cells cultured in the presence of [3H]inositol (to prelabel the membrane phosphoinositide pool), stimulation with vasopressin in the presence of LiCl (10 mm) resulted in a similar dose-dependent increase in labelling of the phosphoinositol fraction, with a maximal response (1·45-fold over basal) at 10 nm. The increased labelling of the phosphoinositol fraction was independent of extracellular Ca2+ as it was not abolished in medium with [Ca2+ ] buffered to intracellular resting levels. This suggests that vasopressin stimulation results in the activation of a phosphoinositidase C. It is probable that cortisol secretion by bovine ZFR cells in response to vasopressin is dependent upon activation of this Ca2+-independent phosphoinositidase C. However, the small magnitude of the cortisol secretory response makes it unlikely that vasopressin is a primary regulator of cortisol secretion in vivo.

Restricted access

C. Massart, C. Le Tellier, C. Lucas, J. Gibassier, G. Leclech, and M. Nicol

ABSTRACT

Cis-diamminedichloroplatinum (II) (cisplatin) is a widely used anticancer drug which induces many sideeffects, but its action on the thyroid gland is still unknown. We have investigated the effects of this drug on human thyrocytes cultured in monolayers or in follicles and stimulated with 200 μU TSH/ml.

After 72h in culture, different concentrations of cisplatin (15, 30 and 75 μm) caused partial or total inhibition of cyclic AMP (cAMP), thyroglobulin (Tg) and tri-iodothyronine (T3) production, whereas thyroxine levels increased in the medium of thyrocytes cultured as follicles. Small doses of the drug did not affect thyrocyte production. Decreases in neutral-red uptake by thyroid cells and in intracellular lactate dehydrogenase, α-hydroxybutyryldehydrogenase and creatine phosphokinase activities were induced by 30 and 75 μm cisplatin.

These data show that high concentrations of cisplatin had a cytotoxic effect on thyrocytes. Cisplatin also induced inhibition of the production of cAMP, Tg and T3.

Restricted access

C Massart, J Gibassier, C Lucas, F Le Gall, S Giscard-Dartevelle, J Bourdinière, M S Moukhtar, and M Nicol

ABSTRACT

We studied the hormonal secretion of a human mixed follicular and medullary carcinoma. Thyroglobulin (Tg) secretion, especially by large cells and sometimes by small ones, was visualized with immunoenzymatic staining. Calcitonin (CT) was produced by small spindle-shaped cells. Moreover, immunofluorescence double staining performed on the resected thyroid tissue showed the secretion of both Tg and CT in a small number of cells. The cells lost their hormonal secretion after 2 months of culture. Hormonal secretion was modulated by different additives in the medium. Tg secretion was induced when TSH was added to the culture medium; the maximal effect was produced with the addition of 1 mU TSH/ml and 1 μm cortisol, which potentiated the effect of TSH on Tg production. A durable Tg secretion was obtained by embedding the cells in Engelbretch—Hohn—Swarn (EHS) tumour matrix. The CT production was reinduced by the addition of 4 mm Ca2+, 1 μm glucagon and 1 μm cortisol to the culture medium. These findings show that different cells are found in a mixed follicular and medullary carcinoma, some of which can secrete both CT and Tg. They can remain differentiated for a long period after being embedded in EHS tumour matrix with Ca2+ and hormonal components.

Free access

R Ivell, G Tillmann, H Wang, M Nicol, PM Stewart, B Bartlick, N Walther, JI Mason, and SD Morley

Upregulation of the steroidogenic acute regulatory protein (StAR) is implicated in the rapid synthesis and secretion of steroidogenic cells to produce steroids in response to stimulation by trophic hormones of the gonadal and stress axes. In the present study, we have assessed the kinetics of both StAR gene transcription and protein biosynthesis in primary cell cultures of bovine adrenocortical and ovarian theca cells, under conditions of acute stimulation by corticotrophin (ACTH) and luteinizing hormone (LH), respectively. In both cell systems, detectable upregulation of StAR gene transcription occurred within 1-2 h, reaching maxima at 4 h (theca cells) or 6 h (adrenocortical cells). mRNA levels returned rapidly to baseline, by 12 h or 24 h, respectively. Specific StAR protein levels were assessed by western blotting using a novel antibody raised against a bovine StAR peptide, and showed a similar fast upregulation, albeit delayed by 1-2 h compared with the mRNA. The response of the cultured theca cells was more acute than that of the adrenocortical cells, possibly reflecting the propensity of the LH receptor to desensitize rapidly, unlike the ACTH receptor. The primary bovine theca cell cultures were also used for fully homologous transfection studies using various deletion promoter-reporter constructs of the bovine StAR gene. Kinetic analysis of the results indicated that the acute transcriptional response resides within the proximal (-315 bp) promoter region, which includes two putative responsive elements for the steroidogenic factor-1. More distal promoter regions may be involved in modulating the specificity of expression by combining enhancer and inhibitory functions.