Search Results

You are looking at 1 - 7 of 7 items for

  • Author: M Lucas x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Luca Clemente and Ian M Bird

The epidermal growth factor receptor (EGFR) is expressed robustly in the placenta, and critical processes of pregnancy such as placental growth and trophoblast fusion are dependent on EGFR function. However, the role that aberrant EGFR signaling might play in the etiology and/or maintenance of preeclampsia (PE) remains largely unexplored. Recently, we have shown that overexpression of EGFR in cultured uterine artery endothelial cells (UAEC), which express little endogenous EGFR, remaps responsiveness away from vascular endothelial growth factor receptor (VEGFR) signaling and toward EGFR, suggesting that endothelial EGFR expression may be kept low to preserve VEGFR control of angiogenesis. Here we will consider the evidence for the possibility that the endothelial dysfunction observed in PE might in some cases result from elevation of endothelial EGFR. During pregnancy, trophoblasts are known to synthesize large amounts of EGFR protein, and the placenta regularly releases syncytiotrophoblast-derived exosomes and microparticles into the maternal circulation. Although there are no reports of elevated EGFR gene expression in preeclamptic endothelial cells, the ongoing shedding of placental vesicles into the vascular system raises the possibility that EGFR-rich vesicles might fuse with endothelium, thereby contributing to the symptoms of PE by interrupting angiogenesis and blocking pregnancy-adapted vasodilatory function.

Restricted access

V Sánchez-Margalet, M Lucas, and R Goberna

ABSTRACT

Pancreastatin is a 49 amino acid peptide first isolated, purified and characterized from the porcine pancreas, and whose biological activity in different tissues can be assigned to the C-terminal part of the molecule. Pancreastatin has a prohormonal precursor, chromogranin A (CGA), which is a glycoprotein present in neuroendocrine cells, including the endocrine pancreas. Both intracellular and extracellular processing of CGA can yield pancreastatin. This processing is tissue-specific, with the pancreatic islet and antral gastric endocrine cells being the major source of fully processed pancreastatin. Most of the circulating CGA is secreted by chromaffin tissue. Therefore, peripheral processing of CGA is probably the major indirect source of pancreastatin. Pancreastatin seems to have a general modulatory control on endocrine (insulin, glucagon, parathormone) and exocrine (pancreatic, gastric) secretion from tissues close to the source of production. This has led to the assumption that pancreastatin may be a peptide with an autocrine and paracrine function. It has recently been revealed to be a peptide with a metabolic function counter-regulatory to insulin action. This effect, in conjunction with the inhibitory effect on insulin and pancreatic exocrine secretion, points to a role in the physiology of stress. The molecular mechanism of the glycogenolytic effect of pancreastatin is better known, although further work is still needed. In general, more studies should be carried out at the molecular level to investigate the mechanism of action of pancreastatin and thus to clarify its physiological role in the neuroendocrine system.

Restricted access

C Massart, J Gibassier, N Genetet, M L Raoul, M Baron, F Le Gall, and C Lucas

ABSTRACT

We studied the lymphocyte-induced alterations in hormonal metabolism and the production of tumour necrosis factor α (TNF-α) during coculture of thyrocytes and autologous lymphocytes from 20 patients with Graves' disease and from five normal subjects. Thyroglobulin (Tg) mRNA was assessed by slot-blot analysis under TSH stimulation. Tg, tri-iodothyronine (T3) and cAMP secretion in the presence of TSH were measured by RIA after 3 or 5 days of coculture. TNF-α levels produced after 5 days incubation were also assayed in lymphocyte culture and coculture media.

Lymphocytes isolated from peripheral blood (PBLs) altered the production of Tg, T3 and cAMP in autologous thyrocytes. Intrathyroidal lymphocytes (ITLs) decreased Tg and cAMP secretion but had no effect on T3 secretion. The reductions in Tg and cAMP levels obtained with mechanically isolated ITLs (M-ITLs) were generally higher than those obtained with ITLs isolated by dispase (D-ITLs). No difference was seen between Graves' disease and normal cocultures. PBLs secreted large concentrations of TNF-α, larger than those obtained with M-ITLs whereas D-ITLs produced low amounts of this cytokine. In coculture, TNF-α levels were lower than those observed in lymphocyte culture. Significant correlations were obtained between TNF-α levels and the decrease in Tg, T3 and cAMP concentrations. The percentage of T lymphocytes was higher in PBLs and D-ITLs than in M-ITLs. B lymphocytes levels were higher in ITLs, especially M-ITLs, than in PBLs. TNF-α production by B lymphocytes was maximal in M-ITLs.

In conclusion, lymphocytes induced a decrease in hormonal thyroid metabolism when cocultured with autologous thyrocytes. These perturbations may be attributed, at least partly, to TNF-α secreted by lymphocytes. TNF-α interacts via the adenylate cyclase pathway of TSH signal transduction.

Restricted access

C. Massart, C. Le Tellier, C. Lucas, J. Gibassier, G. Leclech, and M. Nicol

ABSTRACT

Cis-diamminedichloroplatinum (II) (cisplatin) is a widely used anticancer drug which induces many sideeffects, but its action on the thyroid gland is still unknown. We have investigated the effects of this drug on human thyrocytes cultured in monolayers or in follicles and stimulated with 200 μU TSH/ml.

After 72h in culture, different concentrations of cisplatin (15, 30 and 75 μm) caused partial or total inhibition of cyclic AMP (cAMP), thyroglobulin (Tg) and tri-iodothyronine (T3) production, whereas thyroxine levels increased in the medium of thyrocytes cultured as follicles. Small doses of the drug did not affect thyrocyte production. Decreases in neutral-red uptake by thyroid cells and in intracellular lactate dehydrogenase, α-hydroxybutyryldehydrogenase and creatine phosphokinase activities were induced by 30 and 75 μm cisplatin.

These data show that high concentrations of cisplatin had a cytotoxic effect on thyrocytes. Cisplatin also induced inhibition of the production of cAMP, Tg and T3.

Free access

Fernanda N Cavalcanti, Thais F G Lucas, Maria Fatima M Lazari, and Catarina S Porto

Expression of the estrogen receptor ESR1 is higher in the corpus than it is in the initial segment/caput and cauda of the epididymis. ESR1 immunostaining in the corpus has been localized not only in the nuclei but also in the cytoplasm and apical membrane, which indicates that ESR1 plays a role in membrane-initiated signaling. The present study investigated whether ESR1 mediates the activation of rapid signaling pathways by estradiol (E2) in the epididymis. We investigated the effect of E2 and the ESR1-selective agonist (4,4′,4′′-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT) on the activation of extracellular signal-regulated protein kinases (ERK1/2), CREB protein, and ETS oncogene-related protein (ELK1). Treatment with PPT did not affect ERK1/2 phosphorylation in the cauda, but it rapidly increased ERK1/2 phosphorylation in the initial segment/caput and corpus of the epididymis. PPT also activated CREB and ELK1 in the corpus of the epididymis. The PPT-induced phosphorylation of ERK1/2, CREB, and ELK1 was blocked by the ESR1-selective antagonist MPP and by pretreatment with a non-receptor tyrosine kinase SRC inhibitor, an EGFR kinase inhibitor, an MEK1/2 inhibitor, and a phosphatidylinositol-3-kinase inhibitor. In conclusion, these results indicate that the corpus, which is a region with high expression of the estrogen receptor ESR1, is a major target in the epididymis for the activation of rapid signaling by E2. The sequence of events that follow E2 interaction with ESR1 includes the SRC-mediated transactivation of EGFR and the phosphorylation of ERK1/2, CREB, and ELK1. This rapid estrogen signaling may modulate gene expression in the corpus of the epididymis, and it may play a role in the dynamic microenvironment of the epididymal lumen.

Restricted access

C Massart, J Gibassier, C Lucas, F Le Gall, S Giscard-Dartevelle, J Bourdinière, M S Moukhtar, and M Nicol

ABSTRACT

We studied the hormonal secretion of a human mixed follicular and medullary carcinoma. Thyroglobulin (Tg) secretion, especially by large cells and sometimes by small ones, was visualized with immunoenzymatic staining. Calcitonin (CT) was produced by small spindle-shaped cells. Moreover, immunofluorescence double staining performed on the resected thyroid tissue showed the secretion of both Tg and CT in a small number of cells. The cells lost their hormonal secretion after 2 months of culture. Hormonal secretion was modulated by different additives in the medium. Tg secretion was induced when TSH was added to the culture medium; the maximal effect was produced with the addition of 1 mU TSH/ml and 1 μm cortisol, which potentiated the effect of TSH on Tg production. A durable Tg secretion was obtained by embedding the cells in Engelbretch—Hohn—Swarn (EHS) tumour matrix. The CT production was reinduced by the addition of 4 mm Ca2+, 1 μm glucagon and 1 μm cortisol to the culture medium. These findings show that different cells are found in a mixed follicular and medullary carcinoma, some of which can secrete both CT and Tg. They can remain differentiated for a long period after being embedded in EHS tumour matrix with Ca2+ and hormonal components.

Restricted access

C Massart, J Gibassier, M L Raoul, F Le Gall, G Lancien, N Genetet, A Denais, F Darcel, and C Lucas

ABSTRACT

We have studied the action of peripheral blood lymphocytes (PBLs) and intrathyroidal lymphocytes (ITLs) on the biochemical and hormonal metabolism of autologous thyrocytes cultured in follicles in a collagen gel. The production of tumour necrosis factor α (TNF-α) in culture was also measured. Thyroid tissues and lymphocytes were obtained from ten patients with Graves' disease and from five control subjects. Lymphocyte-induced cytotoxicity was evaluated in autologous thyrocytes cultured in a collagen gel by several tests: neutral red uptake, lactate dehydrogenase activity and glutathione level. Hormonal metabolism was assessed by evaluating tri-iodothyronine (T3) and total cAMP production under TSH stimulation. TNF-α levels were measured in supernatants after 5 days of coculture. PBLs altered biochemical metabolism, T3 synthesis and cAMP production in autologous thyroid follicles. These inhibitions were greater than those obtained with ITLs. No difference was seen between cells obtained from patients with Graves' disease and those from normal subjects. TNF-α levels secreted by PBLs were higher than those secreted by ITLs. The concentrations of this cytokine decreased in coculture. Significant correlations were observed between the decrease in biochemical and hormonal parameters and TNF-α levels. Exogenous TNF-α and high doses of interferon γ inhibited follicle metabolism, especially hormone secretion.

In conclusion, thyrocytes cultured in follicles provide a more sensitive model than monolayer cultures for analysis of lymphocyte-induced interactions. Lymphocytes gradually inhibit the biochemical and hormonal metabolism of autologous thyroid follicles depending on the isolation method. These alterations may be particularly attributed to TNF-α secreted by lymphocytes. The cytokine-induced inhibition of thyroid hormonal function apparently involves the adenylate cyclase system.