Search Results

You are looking at 1 - 10 of 11 items for

  • Author: Ling Li x
  • All content x
Clear All Modify Search
Free access

Li Ling, Meng Ren, Chuan Yang, Guojuan Lao, Lihong Chen, Hengcong Luo, Zhimei Feng, and Li Yan

Inappropriately high expression of matrix metalloproteinase 9 (MMP9) in the late stage of diabetic foot ulcers suppresses wound healing. The underlying mechanisms are not completely understood. Site-specific demethylation was reported to function in the regulation of genes, causing persistent high expression of target genes. Therefore, this study was designed to determine whether site-specific DNA demethylation was a key regulatory component of MMP9 expression in diabetic wound healing, and to further verify the crucial CpG site(s). Human keratinocyte cell line (HaCaT) cells were exposed to tumor necrosis factor a (TNFα), and changes in MMP9 expression and DNA methylation status were detected. We found TNFα treatment increased endogenous MMP9 expression in HaCaT cells and decreased the DNA methylation percentage at the −36 bp promoter site in a time-dependent manner. Bisulfite sequencing PCR revealed differentially demethylated CpG sites in the human MMP9 promoter region, but only the change at the −36 bp site was statistically significant. Dual-luciferase reporter assays showed that the promoter with only the −36 bp site demethylated had slightly higher transcriptional activity than the promoter with all other sites except the −36 bp site demethylated. Our results demonstrate that site-specific DNA demethylation plays an important role in MMP9 expression in TNFα-stimulated keratinocytes. The −36 bp site in the MMP9 gene promoter is crucial to this effect, but other CpG sites may exert synergistic effects. Collectively, these data may contribute to the future development of novel therapeutic strategies to treat diabetic foot ulcers and prevent gangrene and amputation.

Free access

Xiao-Qiu Wang, Jing Yu, Xue-Zhen Luo, Ying-Li Shi, Yun Wang, Ling Wang, and Da-Jin Li

RANTES (C–C chemokine, regulated on activation, normal T cell expressed and secreted) is involved in progression of endometriosis, but the precise mechanism is understood inadequately. This study is to elucidate the roles of RANTES in macrophage recruitment and tolerance in the endometriotic milieu. The expression of RANTES was analyzed by immunohistochemistry. The cell co-cultures were applied to simulate the endometriotic milieu to investigate the regulation of RANTES secretion and its receptor CCR1 expression. Transwell migration assay was used for chemotaxis of U937 cells (macrophage line) to endometrial stromal cells (ESCs) and/or human pelvic mesothelial cells. The expression of CCR1 was analyzed by RT-PCR and qPCR in transcription and by western blot in translation respectively. Concentrations of RANTES, IL10, and IL12p70 were determined by ELISA. The phenotype of U937 cells and apoptosis of ESCs were analyzed by flow cytometry. We have found that the expression of RANTES is significantly higher in the endometriotic tissue and eutopic endometrium than that of the normal endometrium without endometriosis. The combination of 17β-estradiol and dioxin 2,3,7,8-tetrachlorodibenzo-p-dioxin increases significantly RANTES secretion in the endometriosis-associated cell co-culture which can recruit more macrophages, upregulate CCR1 expression, and induce tolerant phenotype, which inhibits the apoptosis of ESC in the milieu. In conclusion, the higher levels of RANTES in the ectopic milieu facilitate the onset and progression of endometriosis by macrophage recruitment and tolerance that in turn inhibits apoptosis and enhances growth of ESC.

Restricted access

Ying Xue, Ran Li, Ping Fang, Zheng-qin Ye, Yong Zhao, Yun Zhou, Ke-qin Zhang, and Ling Li

Gouty arthritis is a common inflammatory disease characterized by monosodium urate (MSU) crystal induced nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome activation with up-regulated caspase-1 protease and IL-1β in macrophages. Cucurbitacin B (CuB) is a tetracyclic triterpene that possesses a potential anti-inflammatory activity. However, the immunomodulatory and anti-inflammatory effects of CuB on gout have not been well characterized. Therefore, the purpose of the present study was to determine whether CuB exhibits anti-inflammatory effects on gout and to analyze the underlying molecular mechanism. We examined the effects of CuB on various stimuli-activated bone marrow-derived macrophages (BMDMs) and the mice model with MSU-induced acute gouty arthritis. Our results demonstrated that CuB effectively suppressed multiple stimuli-activated IL-1β secretion by interrupting NLRP3 inflammasome complex formation, inhibiting NLRP3 inflammasome activation and suppressing key enzymes of glycolysis in macrophages. Consistent with this, CuB pretreatment also ameliorated MSU-induced arthritis in vivo models of gout arthritis, manifested by reduced foot swelling and inflammatory cell infiltration. Taken together, our data provide the evidence that CuB is a NLRP3 inflammasome inhibitor with therapeutic potential for treating NLRP3 inflammasome-mediated diseases, especially gouty arthritis.

Free access

Ling Wang, Yu-Dong Wang, Wen-Jun Wang, Ying Zhu, and Da-Jin Li

Dehydroepiandrosterone (DHEA) may be a promising agent for postmenopausal osteoporosis (PMO), but its mechanism to modulate osteoblasts (OBs) is yet to be explained. To elucidate the effects of DHEA treatment on the ovariectomized (OVX) mice and its mechanisms, we evaluated the morphology of mice bone tissue and expression of proliferating cell nuclear antigen (PCNA) in the vertebrae-derived OB after having treated the OVX animals with DHEA. The results showed that DHEA administration increased the expression of PCNA in OB and changed the bone tissue morphometry of the PMO model. To further investigate this mechanism, the OB was isolated from neonatal mice calvariae by the enzyme-digested assay, exposed to DHEA, and then analyzed for ultrastructure, DNA content, early apoptotic cells, and phosphorylation of extracellular signal-regulated kinase 1/2. It was found that DHEA promoted proliferation and inhibited apoptosis of OB significantly, via mitogen-activated protein kinase signaling pathway independent of either androgen receptor or estrogen receptor, suggesting that it may exert roles via a DHEA-specific receptor directly, not by way of conversion to androgens or estrogens.

Free access

Shuisheng Li, Ling Xiao, Qiongyu Liu, Binbin Zheng, Huapu Chen, Xiaochun Liu, Yong Zhang, and Haoran Lin

Neuromedin U (NMU) and neuromedin S (NMS) play inhibitory roles in the regulation of food intake and energy homeostasis in mammals. However, their functions are not clearly established in teleost fish. In the present study, nmu and nms homologs were identified in several fish species. Subsequently, their cDNA sequences were cloned from the orange-spotted grouper (Epinephelus coioides). Sequence analysis showed that the orange-spotted grouper Nmu proprotein contains a 21-amino acid mature Nmu peptide (Nmu-21). The Nms proprotein lost the typical mature Nms peptide, but it retains a putative 34-amino acid peptide (Nmsrp). In situ hybridization revealed that nmu- and nms-expressing cells are mainly localized in the hypothalamic regions associated with appetite regulation. Food deprivation decreased the hypothalamic nmu mRNA levels but induced an increase of nms mRNA levels. Periprandial expression analysis showed that hypothalamic expression of nmu increased significantly at 3 h post-feeding, while nms expression was elevated at the normal feeding time. I.p. injection of synthetic Nmu-21 peptide suppressed the hypothalamic neuropeptide y (npy) expression, while Nmsrp administration significantly increased the expression of npy and o rexin in orange-spotted grouper. Furthermore, the mRNA levels of LH beta subunit (lh β) and gh in the pituitary were significantly down-regulated after Nmu-21 peptide administration, while Nmsrp was able to significantly stimulate the expression of FSH beta subunit (fsh β), prolactin (prl), and somatolaction (sl). Our results indicate that nmu and nms possess distinct neuroendocrine functions and pituitary functions in the orange spotted grouper.

Free access

Xianglan Sun, Ling Gao, Hung-Yu Chien, Wan-Chun Li, and Jiajun Zhao

AMP-activated protein kinase (AMPK) is a critical regulator of cellular and whole-body energy homeostasis. Twelve AMPK-related kinases (ARKs; BRSK1, BRSK2, NUAK1, NUAK2, QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4, and MELK) have been identified recently. These kinases show a similar structural organization, including an N-terminal catalytic domain, followed by a ubiquitin-associated domain and a C-terminal spacer sequence, which in some cases also contains a kinase-associated domain 1. Eleven of the ARKs are phosphorylated and activated by the master upstream kinase liver kinase B1. However, most of these ARKs are largely unknown, and the NUAK family seems to have different regulations and functions. This review contains a brief discussion of the NUAK family including the specific characteristics of NUAK1 and NUAK2.

Free access

Yue Wang, Xiu Long Niu, Xiao Qin Guo, Jing Yang, Ling Li, Ye Qu, Cun Xiu Hu, Li Qun Mao, and Dan Wang

About 40–60% of ovarian cancer (OVCA) cases express ERα, but only a small proportion of patients respond clinically to anti-estrogen treatment with estrogen receptor (ER) antagonist tamoxifen (TAM). The mechanism of TAM resistance in the course of OVCA progression remains unclear. However, IL6 plays a critical role in the development and progression of OVCA. Our recent results indicated that IL6 secreted by OVCA cells may promote the resistance of these cells to TAM via ER isoforms and steroid hormone receptor coactivator-1. Here we demonstrate that both exogenous (a relatively short period of treatment with recombinant IL6) and endogenous IL6 (generated as a result of transfection with a plasmid encoding sense IL6) increases expression of pERα-Ser118 and pERα-Ser167 in non-IL6-expressing A2780 cells, while deleting endogenous IL6 expression in IL6-overexpressing CAOV-3 cells (by transfection with a plasmid encoding antisense IL6) reduces expression of pERα-Ser118 and pERα-Ser167, indicating that IL6-induced TAM resistance may also be associated with increased expression of pERα-Ser118 and pERα-Ser167 in OVCA cells. Results of further investigation indicate that IL6 phosphorylates ERα at Ser118 and Ser167 by triggering activation of MEK/ERK and phosphotidylinositol 3 kinase/Akt signaling, respectively, to activate the ER pathway and thereby induce OVCA cells resistance to TAM. These results indicate that IL6 secreted by OVCA cells may also contribute to the refractoriness of these cells to TAM via the crosstalk between ER and IL6-mediated intracellular signal transduction cascades. Overexpression of IL6 not only plays an important role in OVCA progression but also promotes TAM resistance. Our results indicate that TAM-IL6-targeted adjunctive therapy may lead to a more effective intervention than TAM alone.

Free access

Ming-Qing Li, Xiao-Fan Hou, Shi-Jian Lv, Yu-Han Meng, Xiao-Qiu Wang, Chuan-Ling Tang, and Da-Jin Li

Tetraspanin CD82 is a wide-spectrum tumor metastasis suppressor that inhibits motility and invasiveness of cancer cells. Endometriosis is a benign gynecological disorder, but appears malignant behaviors including invasion, ectopic implantation and recurrence. This study is to elucidate the role of CD82 expression regulation in the pathogenesis of endometriosis. The short interfering RNA silence was established to analyze the roles of CD82, chemokine CCL2, and its receptor CCR2 in the invasiveness of endometrial stromal cells (ESCs). We have found that the mRNA and protein levels of CD82 in the primary normal ESCs from endometrium without endometriosis are significantly higher than that of the primary ESCs from eutopic endometrium and ectopic tissue. CD82 inhibits the invasiveness of ESCs by downregulating CCL2 secretion and CCR2 expression via mitogen-activated protein kinase (MAPK) and integrinβ1 signal pathway, and in turn upregulating the expression of TIMP1 and TIMP2 in an autocrine manner. The combination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) with 17β-estradiol can promote the invasion of ESCs via suppressing CD82 expression and stimulating CCL2 secretion and CCR2 expression, and the enhanced interaction of CCL2–CCR2 recruits more macrophages into the ectopic milieu in a paracrine manner, which further downregulates CD82 expression in the ectopic ESCs. Our study has demonstrated for the first time that the abnormal lower CD82 expression in ESCs induced by TCDD and estrogen may be an important molecular basis of endometriosis pathogenesis through enhancing the CCL2 secretion and CCR2 expression and the invasion of ESCs via MAPK and integrinβ1 signal pathway.

Free access

Yuxiao Tang, Xingjian Cai, Hongwei Zhang, Hui Shen, Wanyin Wang, Zhilei Shen, Wei Gu, Changquan Ling, and Min Li

The mechanisms of hypothalamic–pituitary–adrenal (HPA) axis regulation have been studied persistently but still are not elucidated. Considering the emerging roles of microRNA in stress response, we conducted a microRNA microarray in mice hypothalamus to identify the potential role of microRNAs in regulating the HPA axis. In total, 41 microRNAs changed during heat stress in which we found that miR-212 contains a binding sequence with corticotropin-releasing hormone (Crh) 3′UTR according to a sequence analysis. We observed that miR-212 expression in the hypothalamus was escalated by repeated heat and restraint stress. By overexpression or inhibition of miR-212 and the dual-luciferase reporter assay, we proved that miR-212 could bind with Crh 3′UTR to regulate its expression in mice hypothalamus primary cells and in the hippocampus neuron cell line HT-22. In addition, we injected miR-212 agomir or antagomir in mice hypothalamus to overexpress or inhibit miR-212, which leads to alterations of CRH expression and HPA axis activity in vivo. Furthermore, miR-212 and CRH were both transcribed by the cAMP response element-binding protein (CREB). Overexpression and inhibition of miR-212 affect CREB-dependent CRH expression. Taken together, our results suggest an inhibitory role of miR-212 on the HPA axis, which acts in a counter-regulatory manner.

Free access

Ke-Hung Tsui, Ying-Ling Chang, Tsui-Hsia Feng, Li-Chuan Chung, Tzu-Yi Lee, Phei-Lang Chang, and Horng-Heng Juang

Growth differentiation factor-15 (GDF15), a member of the transforming growth factor-β superfamily, is associated with human cancer progress. We evaluated the role GDF15 plays in tumorigenesis of prostate carcinoma PC-3 cells. Results from real-time RT-PCR and ELISA revealed that expression of GDF15 was approximately threefold higher in LNCaP cells than in PC-3 cells. Other prostate cell lines (PZ-HPV-7, CA-HPV-10, and DU145 cells) expressed extremely low levels of GDF15. Stable overexpression of GDF15 in PC-3 cells enhanced the degree of cell proliferation and invasion as shown in the 3H-thymidine incorporation assay and in the Matrigel invasion assay respectively. Soft agar assays and xenograft animal studies indicated that overexpression of GDF15 in PC-3 cells increased tumorigenesis in vitro and in vivo. Results from RT-PCR, immunoblot, and reporter assays revealed that overexpression of GDF15 resulted in decreased expression of maspin and upregulation of interleukin-6 (IL6), matriptase, and N-myc downstream-regulated gene 1 (NDRG1) expression. Further studies revealed that overexpression of IL6 enhanced GDF15 expression in LNCaP cells while knockdown of IL6 blocked the expression of GDF15 in PC-3 cells, suggesting that expression of GDF15 is upregulated by IL6. This study demonstrated that expression of GDF15 induces cell proliferation, invasion, and tumorigenesis of prostate carcinoma PC-3 cells. The enhancement of tumorigenesis and invasiveness of prostate carcinoma cells that stably overexpress GDF15 may be caused by the dysregulation of maspin, matriptase, and IL6 gene expression. The expression of GDF15 and IL6 is controlled via a positive feedback loop in PC-3 cells.