Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Li Xiong x
  • All content x
Clear All Modify Search
Free access

Zhao Yang, Zhi-Li Huang, and Ya-Xiong Tao

The melanocortin-3 receptor (MC3R) is a member of the family A G protein-coupled receptors (GPCRs). The MC3R remains the most enigmatic of the melanocortin receptors with regard to its physiological functions, especially its role in energy homeostasis. The N/DPxxY motif and the eighth helix (helix 8) in the carboxyl terminus of GPCRs have been identified to be important for receptor expression, ligand binding, signal transduction and internalization. To gain a better understanding of the structure-function relationship of MC3R, we performed a systematic study of all 20 residues in this domain using alanine-scanning mutagenesis. We showed that although all mutants were expressed normally on the cell surface, eleven residues were important for ligand binding and one was indispensable for downstream cAMP generation. F347A showed constitutive activity in cAMP signaling while all the other mutants had normal basal activities. We studied the signaling capacity of nine mutants in the ERK1/2 signaling pathway. All of these mutants showed normal basal ERK1/2 phosphorylation levels. The pERK1/2 levels of six binding- or signaling-defective mutants were enhanced upon agonist stimulation. The unbalanced cAMP and pERK1/2 signaling pathways suggested the existence of biased signaling in MC3R mutants. In summary, we showed that the DPLIY motif and helix 8 was important for MC3R activation and signal transduction. Our data led to a better understanding of the structure-function relationship of MC3R.

Open access

Liting Wu, Li Xiong, Jin Li, Zishan Peng, Luyao Zhang, Peijie Shi, Yingying Gong, and Haipeng Xiao

This study aimed to identify circular RNAs differentially expressed in the islets of type 2 diabetes (T2DM) models and clarify their roles in the control of β-cell functions. Circular RNAs dysregulated in the islets of diabetic db/db mice were identified by high-throughput RNA sequencing. Then, the expression level of the selected circular RNA circ-Tulp4 was confirmed by real-time PCR in the islets of diabetic models and Min6 cells. MTS, EdU, western blot, flow cytometric analysis, and luciferase assay were performed to investigate the impact of circ-Tulp4 on β-cell functions. This study identified thousands of circular RNAs in mouse pancreatic islets. The circ-Tulp4 level significantly decreased in the diabetic models and altered in the Min6 cells under lipotoxic condition. The modulation of circ-Tulp4 level in Min6 cells regulated cell proliferation. Furthermore, an interaction was demonstrated between circ-Tulp4 and miR-7222-3p, which suppressed the expression of cholesterol esterification-related gene, sterol O-acyltransferase 1 (SOAT1). The accumulation of soat1 activated cyclin D1 expression, thus promoting cell cycle progression. These findings showed that circ-Tulp4 regulated β-cell proliferation via miR-7222-3p/soat1/cyclin D1 signaling. Our research suggested that circ-Tulp4 might be a potential therapeutic intervention for T2DM. Besides, soat1 might be important for β-cell adaptation to lipotoxicity.