Search Results

You are looking at 1 - 9 of 9 items for

  • Author: L. Wang x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

Y.-J. Y. Wan, L. Wang, and T.-C. J. Wu

ABSTRACT

The presence of retinoic acid receptor (RAR) α, β and γ mRNA was examined in 16 different kinds of rat tissue using the highly sensitive reverse transcriptase-polymerase chain reaction technique. The data demonstrated that each tissue expressed at least two types of RAR mRNA. Among the three types of RAR mRNA, RAR α was widely expressed in all types of organ and was the dominant form expressed in the gastrointestinal tract. RAR β mRNA was not present in the intestine and spleen. In addition, RAR β mRNA levels were high in the heart, lung, brain, testis and epididymis. RAR γ mRNA was abundant in both male and female reproductive systems, as well as epidermal tissues. The prevalence of each RAR mRNA in the tissues suggests the diverse biological roles of these receptors.

Restricted access

Y-J Y Wan, L Wang, and T-C J Wu

ABSTRACT

Mouse embryonal carcinoma F9 cells are pluripotent stem cells and differentiate into primitive endodermal cells upon treatment with retinoic acid (RA). We have recently shown that in F9 cells RA regulates gene expression of activin receptor type II (ActR-II), whose ligand is a potent differentiation agent. The present study examined the regulation of the newly cloned activin receptor type IIB (ActR-IIB) gene by RA. F9 cells expressed equal amounts of three ActR-IIB transcripts of 8·0, 7·5 and 4·0 kb. Both 9-cis-RA (c-RA) and all-trans-RA (t-RA) induced ActR-IIB gene expression in a dose-dependent manner. At 10−9 m c-RA exerted no effect, while 10−5 m c-RA increased the 8·0 kb ActR-IIB transcript about sevenfold. In contrast, t-RA induced the 8·0kb ActR-IIB transcript fivefold at 10−9 m and up to eightfold at 10−5 m. The inductive effect on the 8·0 kb transcript was greater than that on the 7·5 kb transcript, and was least effective on the 4·0 kb transcript, suggesting that these three mRNA isoforms may originate from different promoters. Both cycloheximide and actinomycin D inhibited the inductive effect of t-RA on ActR-IIB gene expression, in contrast to ActR-II whose gene expression was not suppressed by cycloheximide but abolished by actinomycin D. Thus, endodermal differentiation of F9 cells is associated with activation of ActR-IIB gene and the mechanisms involved in the regulation of ActR-II and IIB gene expression are different.

Restricted access

Y-J Y Wan, T Pan, L Wang, J Locker, and T-C J Wu

ABSTRACT

In McA-RH 8994 rat hepatoma cells, all-transretinoic acid (t-RA) induces expression of the α-fetoprotein (AFP) and albumin genes and results in a phenotype similar to differentiated fetal hepatocytes. The present study elucidated the mechanism involved in AFP gene regulation mediated by retinoic acid. Northern blot analyses demonstrated that 9-cis-retinoic acid (c-RA), a ligand for retinoid x receptors (RXRs), also induced expression of the AFP gene in McA-RH 8994 cells. The induction was time- and dose-dependent. Northern blots and transfection assays using the 7·3 kb full-length regulatory region of the AFP gene demonstrated that c-RA was more effective than t-RA in regulating expression of the AFP gene. At 10−7 m, c-RA increased AFP mRNA 5-fold and chloramphenicol acetyltransferase (CAT) activity 2·5-fold. In contrast, t-RA at a concentration of 10−7 m exerted no significant effect; 10− 6 to 10−5 m t-RA was needed to affect AFP gene expression. These data suggested that activation of RXRs is essential for the regulation of the AFP gene. Co-transfection experiments revealed that overexpression of RXRα in McA-RH 8994 cells further enhanced the CAT activity induced by c-RA. In addition, c-RA did not alter the half-life of AFP mRNA. Thus, RXRα may play a crucial role in transcriptional regulation of the AFP gene and in controlling hepatocyte phenotype.

Free access

M Zhang, Y Tao, B Zhou, H Xie, F Wang, L Lei, L Huo, Q Sun, and G Xia

Atrial natriuretic peptide (ANP) as well as its receptors is found in mammalian ovary and follicular cells and its function in oocyte meiotic maturation has also been reported in Xenopus, hamster and rat. But the results are controversial and the physiological mechanism of ANP on oocyte maturation is not clear, especially the relationship between gonadotrophin and ANP as well as the signal transduction, and these need further study. The present study conducted experiments to examine these questions by using drug treatment and Western blot analysis and focused on pig oocyte meiotic maturation and cumulus expansion in vitro. The results revealed that ANP could inhibited FSH-induced pig oocyte maturation and cumulus expansion and prevent the full phosphorylation of mitogen-activated protein kinase in both oocytes and cumulus cells, and that these inhibitory effects could be mimicked by 8-Br-cyclic guanosine 5′-monophosphate (8-Br-cGMP), but blocked by a protein kinase G (PKG) inhibitor KT5823. Zaprinast, a cGMP-specific phosphodiesterase inhibitor, could enhance the inhibitory effect of ANP on oocyte maturation. A specific analogue of ANP, C-ANP-(4–23), which binds to the natriuretic peptide receptor-C (NPRC), had no effect in either FSH-induced or spontaneous oocyte maturation. Treatment with forskolin, a stimulator of adenylate cyclase, had a biphasic effect; 44 h treatment induced cumulus expansion but inhibited oocyte maturation while 2 h treatment induced maturation of cumulus-enclosed oocytes (CEOs). Both ANP and C-ANP-(4–23) could inhibit the effect of forskolin on CEO maturation, and these inhibitory effects of ANP/C-ANP-(4–23) could be blocked by preincubation with pertussis toxin (PT), consistent with mediation by a Gi protein(s) in the cumulus cells. All these results suggest that ANP is a multifunctional regulator of FSH and forskolin on pig CEO maturation by two signalling mechanisms: one is via a cGMP/PKG pathway, the other is via NPRC receptors in cumulus cells and the activation of the PT-sensitive Gi protein(s).

Free access

FY Diao, M Xu, Y Hu, J Li, Z Xu, M Lin, L Wang, Y Zhou, Z Zhou, J Liu, and J Sha

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders; it is characterized by polycystic ovaries, hyperandrogenism and chronic anovulation. To obtain a global view of those genes that might be involved in the development of this complex clinical disorder, we used recently developed cDNA microarray technology to compare differential gene expressions between normal human ovary and ovaries from PCOS patients. A total of 9216 clones randomly selected from a commercial human ovary cDNA library were screened. Among them, 290 clones showed differential expressions, including 119 known genes and 100 known or unknown expressed sequence tags (ESTs). Among 119 known genes, 88 were upregulated and 31 downregulated in the PCOS ovary, as compared with normal human ovary. These differentially expressed genes are involved in various biologic functions, such as cell division/apoptosis, regulation of gene expression and metabolism, reflecting the complexity of clinical manifestations of PCOS. The molecular characteristics established from our study will further our understanding of the pathogenesis of PCOS and help us to identify new targets for further studies and for the development of new therapeutic interventions.

Free access

H Wang, Y Horikawa, L Jin, T Narita, S Yamada, N Shihara, K Tatemoto, M Muramatsu, T Mune, and J Takeda

To clarify tissue-specificity of pancreatic β cells, comparison of mRNA expression in various conditions of the tissue of multiple organisms is important. Although the developed methodologies for mRNA monitoring such as microarray, rely on the growth of dbEST (database of expressed sequence tag), a large number of unknown genes in the genome, especially in the rat, have not been shown to be expressed. In this study, we have established the first database of ESTs from rat pancreatic islet and RINm5F cells. Two cDNA libraries were constructed using mRNAs from rat pancreatic islet and RINm5F cells to cover a wider spectrum of expressed genes. Over 40 000 clones were randomly selected from the two libraries and partially sequenced. The sequences obtained were subjected to BLAST database analyses. This large-scale sequencing generated 40 710 3′-ESTs. Clustering analysis and homology search of nucleotide and peptide databases using both 3′- and 5′-ESTs revealed 10 406 non-redundant transcripts representing 4078 known genes or homologs and 6328 unknown genes. To confirm actual expression, the unknown sequences were further subjected to dbEST search, resulting in the identification of 5432 significant matches to those from other sources. Interestingly, of the remaining sequences showing no match, 779 were found to be encoded by exon–intron organization in the corresponding genomic sequences, suggesting that these are newly found as actually expressed in this study. Since many genes are up- or down-regulated in differing conditions, applications of the expression profile should facilitate identification of the genes involved in cell-specific functions in normal and disease states.

Free access

L Y Zhou, D S Wang, B Senthilkumaran, M Yoshikuni, Y Shibata, T Kobayashi, C C Sudhakumari, and Y Nagahama

In order to elucidate the roles of 17β-HSDs in fish gonadal steroidogenesis, three types of 17β-HSDs (17β-HSD1, 17β-HSD8 and putative 17β-HSD12) were cloned and characterized from the Nile tilapia, Oreochromis niloticus. The cloned cDNAs of 17β-HSD type 1, 8 and 12 were 1504, 1006 and 1930 bp long, with open reading frames encoding proteins of 289, 256 and 314 aminoacids, respectively. Tissue distribution pattern analyzed by RT-PCR and Northern blot showed that 17β-HSD1 was dominantly expressed in the ovary, while the putative 17β-HSD12, one of the two duplicates found in fish, is a male specific enzyme and expressed exclusively in testis (detected by RT-PCR only). On the other hand, 17β-HSD8 was expressed in the brain, gill, heart, liver, intestine, gonad, kidney and muscle of both male and female. Enzymatic assays of the three types of 17β-HSDs were performed using recombinant proteins expressed in E. coli or HEK 293 cells. Tilapia 17β-HSD1 expressed in E. coli had the preference for NADP(H) as cofactor and could catalyze the inter-conversion between estrone and estradiol efficiently as well as the inter-conversion between androstenedione and testosterone, but less efficiently. Tilapia 17β-HSD8 recombinant protein expressed in HEK 293 cells could catalyze the conversion of testosterone to androstenedione, as well as the inter-conversion between estrone and estradiol. However, the putative 17β-HSD12 expressed in E. coli or in HEK 293 cells showed no conversion to any of the four substrates tested in this study. Based on enzyme characterization and tissue distribution, it is plausible to attribute crucial roles to 17β-HSDs in the gonadal steroidogenesis of teleosts.

Free access

L Jin, H Wang, T Narita, R Kikuno, O Ohara, N Shihara, T Nishigori, Y Horikawa, and J Takeda

In order to understand the tIssue specificity of the endocrine pancreas, it is important to clarify the expression profile of mRNAs in various states of the tIssue. A total of approximately 9000 non-redundant expressed genes from human pancreatic islets and insulinoma have so far been determined as expressed sequence tags (ESTs) and deposited in public databases. In the present study towards the identification of a complete set of genes expressed in human pancreatic islets, we have determined 3'-ESTs of 21267 clones randomly selected from a cDNA library of human pancreatic islet tumors. Clustering analysis generated 6157 non-redundant sequences comprising 2323 groups and 3834 singletons. Nucleotide and peptide database searches show that 3103 of them represent known human sequences or homologs of genes identified in other species and 58 are new members of structurally related families. The sequences were classified on the basis of the putative protein functions encoded, and were assigned to the respective chromosome by database analysis. The sequences were also compared with the EST databases (dbEST and EPConDB) including ESTs from normal pancreatic islet, insulinoma, and fetal pancreas. Since 3384 genes were newly found to be expressed in human pancreatic islets and 587 of them were unique to the islets, this study has considerably expanded the catalog of genes expressed in the endocrine pancreas. The larger collection of pancreatic islet-related ESTs should provide a better genome source for molecular studies of differentiation, tIssue-specific functions, and tumorigenesis of the endocrine pancreas as well as for genetic studies of diabetes mellitus.

Restricted access

J A Hansen, L H Hansen, X Wang, J J Kopchick, F Gouilleux, B Groner, J H Nielsen, A Møldrup, E D Galsgaard, and N Billestrup

ABSTRACT

Stimulation of GH receptors leads to rapid activation of Jak2 kinase and subsequent tyrosine phosphorylation of the GH receptor. Three specific tyrosines located in the C-terminal domain of the GH receptor have been identified as being involved in GH-stimulated transcription of the Spi 2·1 promoter. Mutated GH receptors lacking all but one of these three tyrosines are able to mediate a transcriptional response when transiently transfected into CHO cells together with a Spi 2·1 promoter/luciferase construct. Similarly, these GH receptors were found to be able to mediate activation of Stat5 DNA-binding activity, whereas the GH receptor mutant lacking all intracellular tyrosines was not. Synthetic tyrosine phosphorylated peptides corresponding to the GH receptor sequence around the three tyrosines inhibited Stat5 DNA-binding activity while their non-phosphorylated counterparts were ineffective. Tyrosine phosphorylated GST-GH receptor fusion proteins specifically bound to Stat5 in extracts from COS 7 cells transfected with Stat5 cDNA. This binding could be inhibited by tyrosine phosphorylated peptides derived from the GH receptor. This study thus demonstrated that specific GH receptor tyrosine residues, in their phosphorylated state, are involved in transcriptional signaling by directly interacting with Stat5.