Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Kohsuke Kataoka x
Clear All Modify Search
Restricted access

Suzuka Onishi and Kohsuke Kataoka

Insulin plays a central role in glucose homeostasis and is produced exclusively by pancreatic islet β-cells. Insulin gene transcription is regulated by a set of β-cell-enriched transcription factors that bind to cis-regulatory elements within the promoter region, and regulation of the insulin gene promoter is closely linked to β-cell functionality. PIASy, a member of the PIAS family of SUMO E3 ligases, is thought to affect insulin gene transcription, but its mechanism of action is not fully understood. Here, we demonstrate that PIASy interacts with MafA and represses insulin gene promoter activity. MafA is a β-cell-restricted basic leucine-zipper transcriptional activator that binds to the C1 element of the insulin gene promoter. In line with previous studies showing the transactivator domain of MafA is SUMOylated, PIASy enhanced the SUMOylation of MafA. However, a SUMOylation-deficient mutant of MafA was still repressed by PIASy, indicating that this modification is dispensable for repression. Using a series of MafA and PIASy mutants, we found that the basic domain of MafA and the amino-terminal region of PIASy containing the SAP domain are necessary for their interaction. In addition, SUMO-interacting motif 1 (SIM1) at the carboxyl-terminal region of PIASy was required to repress the synergistic transactivation of MafA, Pdx1, and Beta2, transcription factors playing central roles in β-cell differentiation and function. The PINIT and SP-RING domains in the middle region of PIASy were dispensable. These findings suggest that PIASy binds to MafA through the SAP domain and negatively regulates the insulin gene promoter through a novel SIM1-dependent mechanism.

Free access

Kenichi Kanai, Shinsaku Aramata, Sayo Katakami, Kunio Yasuda and Kohsuke Kataoka

MAFA is a member of the MAF family of basic leucine zipper transcription factors and is a critical regulator of insulin gene expression and islet β-cell function. To be degraded by the proteasome, MAFA must be phosphorylated by GSK3 and MAP kinases at multiple serine and threonine residues (Ser49, Thr53, Thr57, Ser61, and Ser65) within its amino-terminal domain. In this study, we report that MAFA degradation is stimulated by PA28γ (REGγ and PSME3), a member of a family of proteasome activators that bind and activate the 20S proteasome. To date, only a few PA28γ-proteasome pathway substrates have been identified, including steroid receptor coactivator 3 (SRC3) and the cell cycle inhibitor p21 (CIP1). PA28γ binds to MAFA, induces its proteasomal degradation, and thereby attenuates MAFA-driven transcriptional activation of the insulin promoter. Co-expression of GSK3 enhanced the PA28γ-mediated degradation of MAFA, but mutants that contained alanine substitutions at the MAFA phosphorylation sites did not bind PA28γ and were resistant to degradation. We also found that a PA28γ mutant (N151Y) that did not stimulate p21 degradation enhanced MAFA degradation, and another mutant (K188D) that promoted greater p21 degradation did not enhance MAFA degradation. These results suggest that PA28γ stimulates MAFA degradation through a novel molecular mechanism that is distinct from that for the degradation of p21.