Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Ke Wang x
  • All content x
Clear All Modify Search
Restricted access

Guozheng Gao, Yong Zhao, Ke Wang, and Fang Wang

Transportation of vitamin C [also called ascorbic acid (AA)], an important water-soluble antioxidant and cofactor in testis, requires glucose transporter family (GLUTs) and sodium/vitamin C cotransporter family (SVCT1 and SVCT2). There is so far scant information vis-à-vis the functional roles of SVCTs in testis, although they possess higher affinity for transportation of AA compared to GLUTs. To analyze the biological effects of SVCT2 in testis, we assessed testicular expression of SVCT2 in different experimental settings and the effect of SVCT2 ablation on spermatogenesis. Persistent expression of SVCT2 was shown in the mouse testis at different stages of postnatal development, demonstrated on day 14 of testicular development in mice consistent with appearance of pachytene spermatocytes during the first wave of spermatogenesis. Testicular expression of SVCT2 was enriched in the cytoplasm of murine Sertoli cells (SCs). We then showed that in vivo inhibition of SVCT2 in mouse testis significantly impaired male fertility by causing oligozoospermia and asthenospermia, which mainly stemmed from a deficiency in lactate production. By generating the TM4SVCT2-/- cells and by profiling TM4SVCT2-/- cells with a constitutively activated HIF-1α mutant, we demonstrated that SVCT2 deficiency led to impaired lactate synthesis and reduced expression of Ldha mRNA in SCs. Mechanistically, ablation of SVCT2 resulted in ubiquitination and subsequent degradation of HIF-1α protein in the FSH-stimulated SCs. Collectively, our data document a novel testicular site of action of SVCT2 in the control of lactate synthesis by SCs, probably via ubiquitination-dependent regulation of HIF-1α stability.

Free access

Hui Wang, Wenjing Wu, Jun Duan, Ming Ma, Wei Kong, Yuannan Ke, Gang Li, and Jingang Zheng

It has been reported that ischemic preconditioning (IPC) and adiponectin (APN) are cardioprotective in many cardiovascular disorders. However, whether APN mediates the effect of IPC on myocardial injury has not been elucidated. This study was conducted to investigate whether IPC affects myocardial ischemic injury by increasing APN expression. Male adult rats with cardiac knockdowns of APN and its receptors via intramyocardial small-interfering RNA injection were subjected to IPC and then myocardial infarction (MI) at 24 h after IPC. Globular APN (gAd) was injected at 10 min before MI. APN mRNA and protein levels in myocardium as well as the plasma APN concentration were markedly high at 6 and 12 h after IPC. IPC ameliorated myocardial injury as evidenced by improved cardiac functions and a reduced infarct size. Compared with the control MI group, rats in the IPC + MI group had elevated levels of left ventricular ejection fraction and fractional shortening and a smaller MI size (P < 0.05). However, the aforementioned protective effects were ameliorated in the absence of APN and APN receptors, followed by the inhibition of AMP-activated protein kinase (AMPK) phosphorylation, but reversed by gAd treatment in wild-type rats, and AMPK phosphorylation increased (P < 0.05). Overall, our results suggest that the cardioprotective effects of IPC are partially due to upregulation of APN and provide a further insight into IPC-mediated signaling effects.

Free access

Ke-Hung Tsui, Li-Chuan Chung, Shyi-Wu Wang, Tsui-Hsia Feng, Phei-Lang Chang, and Horng-Heng Juang

Hypoxia induces metabolic alteration in cancer cells by stabilizing hypoxia-inducible factor 1α (HIF-1α (HIF1A)), which regulates the bioenergetic genes of glycolysis and lipid metabolic pathways. However, the target genes of hypoxia-induced metabolic alterations in the prostate remain uncertain. Mitochondrial aconitase (mACON) (ACONM) is an enzyme that is central to carbohydrate and energy metabolism and is responsible for the interconversion of citrate to isocitrate as part of the citric acid cycle in the human prostate. We evaluated the effects of the molecular mechanisms of hypoxia on mACON gene expression in PC-3 and LNCaP human prostate carcinoma cells. Immunoblotting assays revealed that hypoxia modulated mACON and lactate dehydrogenase A (LDHA) protein expression, while these effects were attenuated when HIF-1α was knocked down. Hypoxia induced fatty acid synthase (FASN) in PC-3 cells while hypoxia blocked FASN gene expression in LNCaP cells after 24-h incubation. Results of real-time RT-qPCR, immunoblotting, and transient gene expression assays revealed that hypoxia treatment or co-transfection with HIF-1α expression vector enhanced gene expression of mACON, implying that hypoxia modulated mACON at the transcriptional level. Hypoxia-induced mACON promoter activity is dependent on the DNA fragment located at −1013 to −842 upstream of the translation initiation site. l-mimosine, an iron chelator, stabilized HIF-1α but downregulated mACON gene expression, suggesting that iron chelation blocked the hypoxia-induced mACON gene expression. These results suggest that hypoxia dysregulates the expressions of LDHA, FASN, and mACON genes, and the hypoxia-induced mACON gene expression is via the HIF-1α-dependent and iron-dependent pathways in prostate carcinoma cells.

Free access

Lan Xu, Wenting Wang, Xinyue Zhang, Hanni Ke, Yingying Qin, Li You, Weiping Li, Gang Lu, Wai-Yee Chan, Peter C K Leung, Shidou Zhao, and Zi-Jiang Chen

Obesity is a worldwide health problem with rising incidence and results in reproductive difficulties. Elevated saturated free fatty acids (FFAs) in obesity can cause insulin resistance (IR) in peripheral tissues. The high intra-follicular saturated FFAs may also account for IR in ovarian granulosa cells (GCs). In the present study, we investigated the relationship between saturated FFAs and IR in GCs by the use of palmitic acid (PA). We demonstrated that the glucose uptake in cultured GCs and lactate accumulation in the culture medium were stimulated by insulin, but the effects of insulin were attenuated by PA treatment. Besides, insulin-induced phosphorylation of Akt was reduced by PA in a dose- and time-dependent manner. Furthermore, PA increased phosphorylation of JNK and JNK blockage rescued the phosphorylation of Akt which was downregulated by PA. These findings highlighted the negative effect of PA on GCs metabolism and may partially account for the obesity-related reproductive disorders.

Free access

Wei-An Lai, Yi-Ting Yeh, Wei-Ling Fang, Leang-Shin Wu, Nobuhiro Harada, Peng-Hui Wang, Ferng-Chun Ke, Wen-Ling Lee, and Jiuan-Jiuan Hwang

Estrogens are essential for female reproduction and overall well-being, and estrogens in the circulation are largely synthesized in ovarian granulosa cells. Using primary cultures of ovarian granulosa cells from gonadotropin-primed immature rats, we have recently discovered that pituitary FSH and ovarian cytokine transforming growth factor beta 1 (TGFβ1) induce calcineurin-mediated dephosphorylation–activation of cAMP-response element-binding protein (CREB)-regulated transcription coactivator (CRTC2) to modulate the expression of Star, Cyp11a1, and Hsd3b leading to increased production of progesterone. This study explored the role of calcineurin and CRTC2 in FSH and TGFβ1 regulation of Cyp19a1 expression in granulosa cells. Ovarian granulosa cells treated with FSH displayed increased aromatase protein at 24 h post-treatment, which subsided by 48 h, while TGFβ1 acting through its type 1 receptor augmented the action of FSH with a greater and longer effects. It is known that the ovary-specific Cyp19a1 PII-promoter contains crucial response elements for CREB and nuclear receptor NR5A subfamily liver receptor homolog 1 (LRH1/NR5A2) and steroidogenic factor 1 (SF1/NR5A1), and that the Nr5a2 promoter also has a potential CREB-binding site. Herein, we demonstrate that FSH+TGFβ1 increased LRH1 and SF1 protein levels, and their binding to the Cyp19a1 PII-promoter evidenced, determined by chromatin immunoprecipitation analysis. Moreover, pretreatment with calcineurin auto-inhibitory peptide (CNI) abolished the FSH+TGFβ1-upregulated but not FSH-upregulated aromatase activity at 48 h, and the corresponding mRNA changes in Cyp19a1, and Nr5a2 and Nr5a1 at 24 h. In addition, FSH and TGFβ1 increased CRTC2 binding to the Cyp19a1 PII-promoter and Nr5a2 promoter at 24 h, with CREB bound constitutively. In summary, the results of this study indicate that calcineurin and CRTC2 have important roles in mediating FSH and TGFβ1 collateral upregulation of Cyp19a1 expression together with its transcription regulators Nr5a2 and Nr5a1 in ovarian granulosa cells.

Open access

Kamran Ullah, Tanzil Ur Rahman, Hai-Tao Pan, Meng-Xi Guo, Xin-Yan Dong, Juan Liu, Lu-Yang Jin, Yi Cheng, Zhang-Hong Ke, Jun Ren, Xian-Hua Lin, Xiao-Xiao Qiu, Ting-Ting Wang, He-Feng Huang, and Jian-Zhong Sheng

Previous studies have shown that increasing estradiol concentrations had a toxic effect on the embryo and were deleterious to embryo adhesion. In this study, we evaluated the physiological impact of estradiol concentrations on endometrial cells to reveal that serum estradiol levels probably targeted the endometrium in controlled ovarian hyperstimulation (COH) protocols. An attachment model of human choriocarcinoma (JAr) cell spheroids to receptive-phase endometrial epithelial cells and Ishikawa cells treated with different estradiol (10−9 M or 10−7 M) concentrations was developed. Differentially expressed protein profiling of the Ishikawa cells was performed by proteomic analysis. Estradiol at 10−7 M demonstrated a high attachment rate of JAr spheroids to the endometrial cell monolayers. Using iTRAQ coupled with LC–MS/MS, we identified 45 differentially expressed proteins containing 43 significantly upregulated and 2 downregulated proteins in Ishikawa cells treated with 10−7 M estradiol. Differential expression of C3, plasminogen and kininogen-1 by Western blot confirmed the proteomic results. C3, plasminogen and kininogen-1 localization in human receptive endometrial luminal epithelium highlighted the key proteins as possible targets for endometrial receptivity and interception. Ingenuity pathway analysis of differentially expressed proteins exhibited a variety of signaling pathways, including LXR/RXR activation pathway and acute-phase response signaling and upstream regulators (TNF, IL6, Hmgn3 and miR-140-3p) associated with endometrial receptivity. The observed estrogenic effect on differential proteome dynamics in Ishikawa cells indicates that the human endometrium is the probable target for serum estradiol levels in COH cycles. The findings are also important for future functional studies with the identified proteins that may influence embryo implantation.