Search Results

You are looking at 1 - 2 of 2 items for

  • Author: KT Scougall x
  • Refine by access: All content x
Clear All Modify Search
KT Scougall
Search for other papers by KT Scougall in
Google Scholar
PubMed
Close
,
CA Maltin
Search for other papers by CA Maltin in
Google Scholar
PubMed
Close
, and
JA Shaw
Search for other papers by JA Shaw in
Google Scholar
PubMed
Close

Long-term constitutive secretion of insulin by implantation of ex vivo transfected cells such as fibroblasts or myoblasts or in situ by intramuscular injection of naked plasmid DNA provides a potential approach to gene therapy for diabetes mellitus. A mechanism for regulating insulin secretion will be necessary to realize the therapeutic potential of this approach. A second obstacle is the inability of non-endocrine host cells to fully process proinsulin. Therefore, alteration of the wild-type cDNA will be necessary to achieve processing of proinsulin by endogenous endoproteases within these cells. The cDNAs for beta-galactosidase (beta), human wild-type proinsulin (hppI1) and a mutated construct (hppI4), in which the dibasic PC2 and PC3 cleavage sites had been altered to form furin cleavage sites, were sub-cloned into four vectors (pCR3, pVR1012, pIRES, pTRE), including a tetracycline responsive plasmid (pTRE) that requires co-transfection with another plasmid encoding a transactivator (pTet-off) for transgene expression. Transient transfection of the COS-7 fibroblast cell line with these constructs was performed using DEAE-dextran and liposomes. Analysis of vector efficiencies revealed that pTRE/pTet-off>pIRES>pCR3>pVR1012. Further analysis demonstrated total pro/insulin secretion of 2.33 ng/10(6) cells/24 h with > or =25% processed to insulin in hppI-1.pTRE/pTet-off-transfected cells compared with 0.39 ng/10(6) cells/24 h and >70% processing in hppI-4.pTRE/pTet-off-transfected cells. In co-transfection studies with pTRE-hppI1/pTet-off and pTRE-hppI4/pTet-off constructs, pro/insulin secretion was inhibited to 65-66% and 36-38% of control (100%) in the presence of 0.01 and 0.1 microg/ml tetracycline respectively over a 24-h incubation period. Furthermore, reversal of tetracycline inhibition was demonstrated for pTRE-hppI1/pTet-off- and pTRE-hppI4/pTet-off-transfected cells. After a 48-h incubation with 1.0 microg/ml tetracycline, total pro/insulin levels were 10 and 14% compared with untreated cells respectively. On tetracycline removal, total proinsulin levels increased and were equivalent to untreated groups 72 h later. In conclusion, regulation of fully processed human insulin secretion has been achieved in a transiently transfected non-endocrine cell line.

Free access
NA Taylor
Search for other papers by NA Taylor in
Google Scholar
PubMed
Close
,
G Jan
Search for other papers by G Jan in
Google Scholar
PubMed
Close
,
KT Scougall
Search for other papers by KT Scougall in
Google Scholar
PubMed
Close
,
K Docherty
Search for other papers by K Docherty in
Google Scholar
PubMed
Close
, and
KI Shennan
Search for other papers by KI Shennan in
Google Scholar
PubMed
Close

PC2 and PC3 are neuroendocrine specific members of the eukaryotic subtilisin-like proprotein convertase (PC) family. Both are sorted via the regulated secretory pathway into secretory granules. In order to identify sequences in PC2 which are involved in targeting to the regulated secretory pathway we expressed a series of PC2 cDNAs containing mutations in the C terminal or propeptide domains in the mouse corticotrophic AtT20 cell line. Sorting of endogenous PC3 was used as a control. PC2 and PC3 were secreted with similar kinetics and sorted to secretory granules with similar efficiencies. Deletions of up to 50 amino acids from the C-terminus of proPC2 had no effect on secretion or sorting, but larger deletions completely prevented maturation or secretion. Two large deletions within the propeptide also prevented secretion. Smaller deletions between the primary and secondary cleavage sites, or of the primary cleavage site, reduced the amount of protein secreted but did not affect sorting to secretory granules. Replacement of the propeptide of PC2 with that of the endogenous PC3 also had no effect on secretion or sorting. The results indicate that targeting of proPC2 to the regulated secretory pathway is dependent on more than one region within the proPC2 molecule.

Free access