Search Results

You are looking at 1 - 3 of 3 items for

  • Author: K Wakabayashi x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

T. Ezashi, T. Hirai, T. Kato, K. Wakabayashi, and Y. Kato

ABSTRACT

The gene for the β subunit of porcine LH (LH-β) was cloned from a genomic library constructed in EMBL3. The nucleotide sequence was determined for the entire gene transcriptional unit of porcine LH-β in addition to 1277 and 372 bp of the 5′- and 3′-flanking regions respectively. Southern blot analysis of the porcine genomic DNA indicated that the LH-β gene is present as a single copy. The transcriptional unit of porcine LH-β spanned 1107 bp and contained three exons interrupted by two introns of 326 and 289 bp. The short untranslated sequence in the first exon and the location of the exon/intron junctions at amino acid residues −16/−15 and +41/+42 were highly conserved in the rat, human and bovine LH-β genes. In the 5′-flanking region, one TATA box and two CCAAT boxes were present. The steroid-responsive element was not found up to 1277 bases upstream of the transcription start site. The potential AP-2 factor-responsive elements appeared nine times within the sequence that was determined, and four of them were located in the 5′-flanking region. Two distal AP-2 elements were arranged in an inverted repeat forming a 16 bp palindromic sequence. This feature suggested that hypothalamic gonadotrophin-releasing hormone stimulates expression of the LH-β gene, predominantly by a signal-transduction system with the protein kinase C cascade and a mediator, the AP-2 factor. A further characteristic feature of the porcine LH-β gene was the presence of clusters of GC boxes and CACCC elements in the 5′-flanking region and the downstream sequence. Co-existence of these regulatory elements with other elements, such as the AP-2 element or CCAAT box, was also found. The porcine LH-β gene shows a structure distinct from the porcine FSH-β and common α genes, which are counterparts of the LH-β gene, reflecting differential control of their synthesis during gametogenesis.

Restricted access

N. Takahashi, K. Yoshihama, S. Kikuyama, K. Yamamoto, K. Wakabayashi, and Y. Kato

ABSTRACT

A prolactin cDNA was cloned from a cDNA expression library constructed from total RNA of bullfrog (Rana catesbeiana) adenohypophyses by immunoscreening with antiserum against bullfrog prolactin. The cDNA clone thus obtained contained a 249 bp insert. Using this clone as a probe, plaque hybridizations were performed and two additional clones obtained. These clones had a polyadenylation site different from that of the first obtained clone, suggesting that the 3′-untranslated sequence was heterogeneous in length. The longest clone contained 830 bp, which encoded part of the signal peptide and the entire sequence of mature prolactin. The deduced amino acid sequence was in good accord with that determined by direct protein sequencing of purified bullfrog prolactin. The length of the bullfrog prolactin mRNA was estimated by Northern blot analysis to be about 1·0 kb. Homologies of prolactin nucleotide and amino acid sequences between bullfrog and other vertebrates were 64 and 65% for man, 66 and 68% for pig, 61 and 52% for rat, 69 and 74% for chicken, and 50 and 35% for salmon respectively. Highly conserved regions reported for mammalian prolactins also existed in bullfrog prolactin. Homologies of nucleotide and amino acid sequences between prolactin and GH of bullfrog origin were 49 and 25% respectively. Using the cDNA, the content of prolactin mRNA in the pituitary glands of metamorphosing tadpoles was measured. Prolactin mRNA levels rose at the mid-climax stage, suggesting that the increase in plasma and pituitary prolactin levels known to occur at the climax stage accompanies the increase in prolactin synthesis.

Restricted access

K Gen, O Maruyama, T Kato, K Tomizawa, K Wakabayashi, and Y Kato

ABSTRACT

Two types of cDNA (GTHα1 and -α2) encoding the α subunits of masu salmon (Oncorhynchus masou) gonadotrophin were cloned by the reverse transcription-polymerase chain reaction for pituitary mRNAs. The nucleotide sequences showed that the GTHα1 cDNA was 380 bp long, encoding 119 amino acids, and that GTHα2 cDNA was 365 bp long, encoding 114 amino acids. The masu salmon α subunit types had a few differences between the sequences, with homologies of 80% (nucleotide sequence) and 72% (amino acid sequence). The structural difference between the α1 and α2 subunits was predicted using hydropathic analysis. The evolutionary interval between masu and chum salmon was estimated to be 4·0 and 2·3 million years by comparing their GTHα1 and -α2 subunits respectively. These time values are roughly consistent with the evolutionary time interval (3·0 million years) estimated from fossil records and an isozyme study. Specific synthetic oligonucleotide probes were constructed and used for genomic Southern blot analyses. The restriction fragment sizes of the GTHα1 and -α2 genes were similar, and when their patterns were compared with those from four other teleosts, each species showed a different pattern from the others, but no difference between their respective α1 and α2 genes. Therefore, the structural features of the GTHα1 and -α2 genes may have diverged in a similar manner in these five teleosts.