We have previously shown that COUP-TFII and Ear-2, two members of the nuclear orphan receptor family, are able to repress oestrogen-stimulated transcriptional activity of the human oxytocin (OT) gene promoter by binding to a site that overlaps with the oestrogen response element (ERE) present in the 5' flanking region of the gene. Although most nuclear receptor-mediated transcriptional repression conforms with the paradigm of passive repression and involves competitive binding to an activator site, active repression, i.e. silencing of basal promoter activity, has been observed in a limited number of cases. Here we show by co-transfection experiments using COUP-TFII and Ear-2 expression vectors and reporter constructs containing OT gene promoter fragments linked to the chloramphenicol acetyltransferase gene that both COUP-TFII and Ear-2 are capable of silencing basal OT gene promoter activity by 54 and 75% respectively. 5' Deletion and footprint analyses revealed two areas of functionally important interaction sites: (1) a direct TGACC(T/C) repeat overlapping the ERE and (2) a more promoter-proximal area centred at - 90 containing three imperfect direct repeats (R1-R3) spaced by four nucleotides each. Mutagenesis of reporter constructs as well as electrophoretic mobility-shift assays demonstrated that each of the three proximal repeats R1-R3 contributed to orphan receptor binding and the silencing effect. Inasmuch as the orphan receptor-binding sites are not involved in mediating basal transcriptional activity of the OT gene promoter, the observed effects are best interpreted as active repression or promoter silencing. Moreover, since COUP-TFII and Ear-2 are both co-expressed in OT-expressing uterine epithelial cells, the novel transcriptional effects described here are likely to be of functional importance in the fine-tuning of uterine OT gene expression in vivo.
Search Results
You are looking at 1 - 3 of 3 items for
- Author: K Chu x
- Refine by Access: All content x
K Chu and HH Zingg
Although an increasing number of nuclear orphan receptors have recently been identified, the number of known naturally occurring genes that are directly regulated by orphan receptors is still small. We have shown previously that the gene encoding the neuropeptide oxytocin (OT) is negatively regulated by the orphan receptors chicken ovalbumin upstream transcription factor I (COUP-TFI) and II. Here we show that the mouse OT gene promoter is activated by RORalpha, a representative of the ROR/RZR orphan receptor subfamily. Using promoter/chloramphenicol acetyltransferase reporter constructs in heterologous transfection assays, we determined that RORalpha action induces a <6-fold increase in promoter activity. By 5' and 3' deletion analysis, DNase footprint analysis and electrophoretic mobility shift assays, we found that RORalpha action is mediated by two 14 bp regions centered at 160 and 180 nucleotides upstream of the transcriptional initiation site. Both sites contain significant sequence identities with an established ROR recognition sequence. Mutations in either or both of these sites reduce significantly RORalpha-induced activation of the OT promoter. In view of the strong transcriptional activation exerted by RORalpha on the OT gene promoter and the widespread distribution of different members of the ROR/RZR family, interactions between ROR/RZR isoforms and the OT gene may form part of the multifactorial regulatory mechanisms that control OT gene expression in different tissues.
Carrie Y Y Cheng, Jessica Y S Chu, and Billy K C Chow
The maintenance of body water homeostasis depends on the balance between water intake and water excretion. In the kidney, vasopressin (Vp) is a critical regulator of water homeostasis by controlling the insertion of aquaporin 2 (AQP2) onto the apical membrane of the collecting duct principal cells in the short term and regulating the gene expression of AQP2 in the long term. A growing body of evidence from both in vitro and in vivo studies demonstrated that both secretin and oxytocin are involved as Vp-independent mechanisms regulating the renal water reabsorption process, including the translocation and expression of AQP2. This review focuses on how these two hormones are potentially involved as Vp-independent mechanisms in controlling water homeostasis.