The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily and is essential for controlling sodium transport in epithelial tissues such as the kidney and colon. Moreover, it is also present in other non-epithelial tissues and is capable of activation by both mineralocorticoids and glucocorticoids. A challenge in understanding transcriptional regulation by the MR and other nuclear receptors is to determine how tissue- and ligand-specificity is achieved. Over the past decade, it has become clear that a heterogeneous group of non-receptor proteins termed as coregulators are required to either enhance or repress nuclear receptor-mediated transactivation of target genes. A subset of these coregulators may be expected to confer specificity to MR-mediated responses by virtue of their variable tissue expression and selectivity for different ligands. Specific coregulator–MR interactions may be a suitable target in the rational design of tissue-specific MR modulators as has been described for other steroid receptors. However, the number of coregulators identified to date for the MR is very limited compared with other nuclear receptors. Understanding the full complement of MR coregulators is essential for unraveling the complexity of MR signaling pathways and will facilitate the development of selective MR modulators.
Search Results
You are looking at 1 - 10 of 12 items for
- Author: Jun Yang x
- Refine by Access: All content x
Jun Yang, Peter J Fuller, James Morgan, Hirotaka Shibata, Colin D Clyne, and Morag J Young
The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily. Pathological activation of the MR causes cardiac fibrosis and heart failure, but clinical use of MR antagonists is limited by the renal side effect of hyperkalemia. Coregulator proteins are known to be critical for nuclear receptor-mediated gene expression. Identification of coregulators, which mediate MR activity in a tissue-specific manner, may allow for the development of novel tissue-selective MR modulators that confer cardiac protection without adverse renal effects. Our earlier studies identified a consensus motif among MR-interacting peptides, MPxLxxLL. Gem (nuclear organelle)-associated protein 4 (GEMIN4) is one of the proteins that contain this motif. Transient transfection experiments in HEK293 and H9c2 cells demonstrated that GEMIN4 repressed agonist-induced MR transactivation in a cell-specific manner. Furthermore, overexpression of GEMIN4 significantly decreased, while knockdown of GEMIN4 increased, the mRNA expression of specific endogenous MR target genes. A physical interaction between GEMIN4 and MR is suggested by their nuclear co-localization upon agonist treatment. These findings indicate that GEMIN4 functions as a novel coregulator of the MR.
He Jiang, Xiao-Ping Ye, Zhong-Yin Yang, Ming Zhan, Hai-Ning Wang, Huang-Min Cao, Hui-Jun Xie, Chun-Ming Pan, Huai-Dong Song, and Shuang-Xia Zhao
There is a high incidence of metabolic syndrome among patients with primary aldosteronism (PA), which has recently been associated with an unfavorable cardiometabolic profile. However, the underlying mechanisms have not been clarified in detail. Characterizing aldosterone (Ald) target genes in adipocytes will help us to elucidate the deleterious effects associated with excess Ald. Apelin, a novel adipokine, exerts beneficial effects on obesity-associated disorders and cardiovascular homeostasis. The objective of this study was to investigate the effects of high Ald levels on apelin expression and secretion and the underlying mechanisms involved in adipocytes. In vivo, a single-dose Ald injection acutely decreased apelin serum levels and adipose tissue apelin production, which demonstrates a clear inverse relationship between the levels of plasma Ald and plasma apelin. Experiments using 3T3-L1 adipocytes showed that Ald decreased apelin expression and secretion in a time- and dose-dependent manner. This effect was reversed by glucocorticoid receptor (GR) antagonists or GR (NR3C1) knockdown; furthermore, putative HREs were identified in the apelin promoter. Subsequently, we verified that both glucocorticoids and mineralocorticoids regulated apelin expression through GR activation, although no synergistic effect was observed. Additionally, detailed potential mechanisms involved a p38 MAPK signaling pathway. In conclusion, our findings strengthen the fact that there is a direct interaction between Ald and apelin in adipocytes, which has important implications for hyperaldosteronism or PA-associated cardiometabolic syndrome and hoists apelin on the list of potent therapeutic targets for PA.
He-jun Zhao, Xia Jiang, Li-juan Hu, Lei Yang, Lian-dong Deng, Ya-ping Wang, and Zhi-peng Ren
This study aimed to determine whether and how the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide affects the chemoresistance and chemosensitivity of pancreatic cancer cells to gemcitabine in vitro and in vivo. The GLP-1R and protein kinase A (PKA) levels were compared between the human pancreatic cancer cell line PANC-1 and the gemcitabine-resistant cell line PANC-GR. The in vitro effects of liraglutide on the cell proliferation and apoptosis as well as the nuclear factor-kappa B NF-κB expression levels of PANC-GR cells were evaluated. In addition, a mouse xenograft model of human pancreatic cancer was established by s.c. injection of PANC-1 cells, and the effects of liraglutide on the chemosensitivity were evaluated in vitro and in vivo. In contrast to PANC-1 cells, PANC-GR cells exhibited lower expression levels of GLP-1R and PKA. Incubation with liraglutide dose dependently inhibited the growth, promoted the apoptosis, and increased the expression of GLP-1R and PKA of PANC-GR cells. Similar effects of liraglutide were observed in another human pancreatic cancer cell line MiaPaCa-2/MiaPaCa-2-GR. Either the GLP-1R antagonist Ex-9, the PKA inhibitor H89, or the NF-κB activator lipopolysaccharide (LPS) could abolish the antiproliferative and proapoptotic activities of liraglutide. Additionally, each of these agents could reverse the expression of NF-κB and ABCG2, which was decreased by liraglutide treatment. Furthermore, liraglutide treatment increased the chemosensitivity of pancreatic cancer cells to gemcitabine, as evidenced by in vitro and in vivo experiments. Thus, GLP-1R agonists are safe and beneficial for patients complicated with pancreatic cancer and diabetes, especially for gemcitabine-resistant pancreatic cancer.
Lingxia Pang, Lianghui You, Chenbo Ji, Chunmei Shi, Ling Chen, Lei Yang, Fangyan Huang, Yahui Zhou, Jun Zhang, Xiaohui Chen, and Xirong Guo
Excessive adipocyte differentiation and proliferation are closely associated with the onset of obesity, which has been partially linked to microRNA expression. In previous studies, using miRNA microarray screening, we found that miR-1275 was significantly decreased in human mature adipocytes. In this study, we examined the role of miR-1275 in adipogenesis. Our results indicated that miR-1275 can inhibit the differentiation of human visceral preadipocytes without affecting their proliferation. ELK1, an E-twenty-six (ETS)-domain transcription factor associated with adipocyte differentiation, was strongly suppressed by miR-1275 in human visceral adipocytes. This was demonstrated via a dual-luciferase reporter assay and pointed to ELK1 as a direct target of miR-1275. Furthermore, miR-1275 expression was significantly diminished in the visceral adipose tissue of overweight and obese human subjects accompanied by a negative correlation with body mass index. These results suggest that miR-1275 could play a future role in the management of obesity, as a novel therapeutic target or biomarker.
Jae Hoon Moon, Hyung Jun Kim, Hyun Min Kim, Ae Hee Yang, Byung-Wan Lee, Eun Seok Kang, Hyun Chul Lee, and Bong Soo Cha
Hepatic LDL receptor-related protein 1 (LRP1) plays a role in the clearance of circulating remnant lipoproteins. In this study, we investigated the effect of rosiglitazone treatment on the expression and function of hepatic LRP1. HepG2 cells were incubated with various concentrations of rosiglitazone. Male Long-Evans Tokushima Otsuka (LETO) rats and Otsuka-Long-Evans-Tokushima Fatty (OLETF) rats were treated with rosiglitazone for 5 weeks. The expression and function of LRP1 in HepG2 cells and liver samples of rats were analyzed. LRP1 mRNA and protein expressions were increased by 0.5 and 5 μM rosiglitazone in HepG2 cells. However, at concentrations above 50 μM rosiglitazone, LRP1 mRNA and protein expressions did not change compared with those in nontreated cells. Reporter assay showed that 0.5 and 5 μM rosiglitazone increased the transcriptional activity of the LRP1 promoter in HepG2 cells. The uptake of apolipoprotein E through LRP1 in HepG2 cells was also increased by rosiglitazone. Hepatic LRP1 was reduced in OLETF rats compared with that of LETO rats and rosiglitazone treatment increased hepatic LRP1 in OLETF rats. A high glucose condition (25 mM glucose in culture media) reduced the expression of LRP1 in HepG2 cells, and this reduced LRP1 expression was recovered with rosiglitazone. In conclusion, our data suggest that decreased hepatic LRP1 in a diabetic condition is associated with the development of atherogenic dyslipidemia and that increased hepatic LRP1 by thiazolidinediones could contribute to an improvement in atherogenic lipid profiles in diabetic patients.
Colin D Clyne, Kevin P Kusnadi, Alexander Cowcher, James Morgan, Jun Yang, Peter J Fuller, and Morag J Young
The mineralocorticoid receptor (MR) is a ligand-activated transcription factor that regulates cardiorenal physiology and disease. Ligand-dependent MR transactivation involves a conformational change in the MR and recruitment of coregulatory proteins to form a unique DNA-binding complex at the hormone response element in target gene promoters. Differences in the recruitment of coregulatory proteins can promote tissue-, ligand- or gene-specific transcriptional outputs. The goal of this study was to evaluate the circadian protein TIMELESS as a selective regulator of MR transactivation. TIMELESS has an established role in cell cycle regulation and DNA repair. TIMELESS may not be central to mammalian clock function and does not bind DNA; however, RNA and protein levels oscillate over 24 h. Co-expression of TIMELESS down-regulated MR transactivation of an MR-responsive reporter in HEK293 cells, yet enhanced transactivation mediated by other steroid receptors. TIMELESS markedly inhibited MR transactivation of synthetic and native gene promoters and expression of MR target genes in H9c2 cardiac myoblasts. Immunofluorescence showed aldosterone induces colocalisation of TIMELESS and MR, although a direct interaction was not confirmed by coimmunoprecipitation. Potential regulation of circadian clock targets cryptochrome 1 and 2 by TIMELESS was not detected. However, our data suggest that these effects may involve TIMELESS coactivation of oestrogen receptor alpha (ERα). Taken together, these data suggest that TIMELESS may contribute to MR transcriptional outputs via enhancing ERα inhibitory actions on MR transactivation. Given the variable expression of TIMELESS in different cell types, these data offer new opportunities for the development of MR modulators with selective actions.
Feng Zhang, Qi Xiong, Hu Tao, Yang Liu, Nian Zhang, Xiao-Feng Li, Xiao-Jun Suo, Qian-Ping Yang, and Ming-Xin Chen
Acyl-coenzyme A oxidase 1 (ACOX1) is the first and rate-limiting enzyme in peroxisomal fatty acid β-oxidation of fatty acids. Previous studies have reported that ACOX1 was correlated with the meat quality of livestock, while the role of ACOX1 in intramuscular adipogenesis of beef cattle and its transcriptional and post-transcriptional regulatory mechanisms remain unclear. In the present study, gain-of-function and loss-of-function assays demonstrated that ACOX1 positively regulated the adipogenesis of bovine intramuscular preadipocytes. The C/EBPα-binding sites in the bovine ACOX1 promoter region at −1142 to −1129 bp, −831 to −826 bp, and −303 to −298 bp were identified by promoter deletion analysis and site-directed mutagenesis. Electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) further showed that these three regions are C/EBPα-binding sites, both in vitro and in vivo, indicating that C/EBPα directly interacts with the bovine ACOX1 promoter and inhibits its transcription. Furthermore, the results from bioinformatics analysis, dual luciferase assay, site-directed mutagenesis, qRT-PCR, and Western blotting demonstrated that miR-25-3p directly targeted the ACOX1 3’UTR (3’UTR). Taken together, our findings suggest that ACOX1, regulated by transcription factor C/EBPα and miR-25-3p, promotes adipogenesis of bovine intramuscular preadipocytes via regulating peroxisomal fatty acid β-oxidation.
Mu-Hsin Chang, Wei-Wen Kuo, Ray-Jade Chen, Ming-Chin Lu, Fuu-Jen Tsai, Wu-Hsien Kuo, Ling-Yun Chen, Wen-Jun Wu, Chih-Yang Huang, and Chun-Hsien Chu
The IGF-II/mannose 6-phosphate receptor (IGF2R) function in extracellular matrix (ECM) remodeling is known to occur as a result of transforming growth factor-β (TGF-β) activation and plasmin in the proteolytic cleavage level caused by the interaction between latent TGF-β and urokinase plasminogen activator receptor (uPAR) respectively. In one of our previous studies, we found IGF-II and IGF2R dose-dependently correlated with the progression of pathological hypertrophy remodeling following complete abdominal aorta ligation. However, how this IGF2R signaling pathway responds specifically to IGF-II and regulates the myocardial ECM remodeling process is unclear. We found that IGF2R was aberrantly expressed in myocardial infarction scars. The matrix metalloproteinase-9 (MMP-9) zymographic activity was elevated in H9c2 cardiomyoblast cells treated with IGF-II, but not IGF-I. Treatment with Leu27IGF-II, an IGF2R specifically binding IGF-II analog, resulted in significant time-dependent increases in the MMP-9, tissue-type plasminogen activator (tPA), and urokinase plasminogen activator (uPA); and a reduction in the tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) protein expression. Furthermore, IGF2R expression inhibition by siRNA blocked the IGF-II-induced MMP-9 activity. We hypothesize that after IGF-II is bound with IGF2R, the resulting signal disrupts the balance in the MMP-9/TIMP-2 expression level and increases plasminogen activator (PAs) expression involved in the development of myocardial remodeling. If so, IGF2R signaling inhibition may have potential use in the development of therapies preventing heart fibrosis progression.
Chuan-Chou Tu, V Bharath Kumar, Cecilia Hsuan Day, Wei-Wen Kuo, Su-Peng Yeh, Ray-Jade Chen, Chen-Rong Liao, Hsiao-Yu Chen, Fuu-Jen Tsai, Wen-Jun Wu, and Chih-Yang Huang
Previous studies have reported that estrogen receptors (ERs) are expressed in normal human liver, chronic hepatitis, and benign hepatic tumor tissues. However, decreased expression of ERs can be observed in hepatocellular carcinoma (HCC) and the role of ERs in HCC is not fully understood. Thus, the present study aimed to investigate the molecular mechanism induced by the overexpression of ERα (ERα (ESR1)) in Hep3B cells. We first detected the induction of apoptosis in ER-negative Hep3B cells using DNA fragmentation assay and flow cytometry. We found that ERα and ERα plus 17β-estradiol treatment increased apoptosis in Hep3B cells. Additionally, western blotting showed increased expression of active caspase 3 and tumor necrosis factor α (TNFα (TNF)) in ER α-transfected cells. To further understand the importance of SP1-binding sites in the TNF α promoter, ERα-negative Hep3B cells were co-transfected with ER α and a wild-type TNFα plasmid or TNF α with deleted SP1 regions. Deletion of both distant and primal SP1 sites abolished the activity of ERα, and similar results were observed by blocking the expression of SP1 protein using mithramycin (MA). This result indicates that SP1 protein is essential for ERα-activated TNF α promoter activity. Co-immunoprecipitation assay further confirmed the binding interaction between ERα and SP1 in a ligand-dependent manner. In general, we demonstrate that the overexpression of ERα mediates apoptosis in ERα-negative Hep3B cells by the binding of ERα to SP1 protein. Additionally, this ERα–SP1 complex binds to the proximal and distal sites of the TNF α gene promoter and further induces the expression of active caspase 3 in a ligand-dependent manner.