Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Jing Cen x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Jing Cen, Ernest Sargsyan, Anders Forslund, and Peter Bergsten

Elevated levels of palmitate accentuate glucose-stimulated insulin secretion (GSIS) after short-term and cause beta-cell dysfunction after prolonged exposure. We investigated whether metformin, the first-line oral drug for treatment of T2DM, has beneficial effects on FFA-treated human islets and the potential mechanisms behind the effects. Insulin secretion, oxygen consumption rate (OCR), AMPK activation, endoplasmic reticulum (ER) stress and apoptosis were examined in isolated human islets after exposure to elevated levels of palmitate in the absence or presence of metformin. Palmitate exposure doubled GSIS after 2 days but halved after 7 days compared with control. Inclusion of metformin during palmitate exposure normalized insulin secretion both after 2 and 7 days. After 2-day exposure to palmitate, OCR and the marker of the adaptive arm of ER stress response (sorcin) were significantly raised, whereas AMPK phosphorylation, markers of pro-apoptotic arm of ER stress response (p-EIF2α and CHOP) and apoptosis (cleaved caspase 3) were not affected. Presence of metformin during 2-day palmitate exposure normalized OCR and sorcin levels. After 7-day exposure to palmitate, OCR and sorcin were not significantly different from control level, p-AMPK was reduced and p-EIF2α, CHOP and cleaved caspase 3 were strongly upregulated. Presence of metformin during 7-day culture with palmitate normalized the level of p-AMPK, p-EIF2α, CHOP and cleaved caspase 3 but significantly increased the level of sorcin. Our study demonstrates that metformin prevents early insulin hypersecretion and later decrease in insulin secretion from palmitate-treated human islets by utilizing different mechanisms.

Restricted access

Ruifeng Shi, Jing Cen, Gunilla Westermark, Sheng Zhao, Nils Welsh, Zilin Sun, and Joey Lau Börjesson

Beta-cell dysfunction is a hallmark of disease progression in patients with diabetes. Research have been focused on maintaining and restoring beta-cell function during diabetes development. The aims of this study were to explore the expression of C-type lectin domain containing 11A (CLEC11A), a secreted sulfated glycoprotein, in human islets, and to evaluate the effects of CLEC11A on beta-cell function and proliferation in vitro. To test these hypotheses, human islets and human EndoC-βH1 cell line were used in this study. We identified that CLEC11A was expressed in beta-cells and alpha-cells in human islets but not in EndoC-βH1 cells; whereas the receptor of CLEC11A called integrin subunit alpha 11 (ITGA11), was found in both human islets and EndoC-βH1 cells. Long-term treatment with exogenous recombinant human CLEC11A (rhCLEC11A) accentuated glucose stimulated insulin secretion, insulin content and proliferation from human islets and EndoC-βH1 cells, which was partially due to the accentuated expression levels of transcription factors MAFA and PDX1. However, the impaired beta-cell function and reduced mRNA expression of INS and MAFA in EndoC-βH1 cells that was caused by chronic palmitate exposure, could only be partially improved by the introduction of rhCLEC11A. Based on these results, we conclude that rhCLEC11A promotes insulin secretion, insulin content and proliferation in human beta-cells, which are associated with the accentuated expression levels of transcription factors MAFA and PDX1. CLEC11A, therefore, may provide a novel therapeutic target for maintaining beta-cell function in patients with diabetes.