Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Jian Ming Hou x
Clear All Modify Search
Free access

Ming-Qing Li, Xiao-Fan Hou, Shi-Jian Lv, Yu-Han Meng, Xiao-Qiu Wang, Chuan-Ling Tang and Da-Jin Li

Tetraspanin CD82 is a wide-spectrum tumor metastasis suppressor that inhibits motility and invasiveness of cancer cells. Endometriosis is a benign gynecological disorder, but appears malignant behaviors including invasion, ectopic implantation and recurrence. This study is to elucidate the role of CD82 expression regulation in the pathogenesis of endometriosis. The short interfering RNA silence was established to analyze the roles of CD82, chemokine CCL2, and its receptor CCR2 in the invasiveness of endometrial stromal cells (ESCs). We have found that the mRNA and protein levels of CD82 in the primary normal ESCs from endometrium without endometriosis are significantly higher than that of the primary ESCs from eutopic endometrium and ectopic tissue. CD82 inhibits the invasiveness of ESCs by downregulating CCL2 secretion and CCR2 expression via mitogen-activated protein kinase (MAPK) and integrinβ1 signal pathway, and in turn upregulating the expression of TIMP1 and TIMP2 in an autocrine manner. The combination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) with 17β-estradiol can promote the invasion of ESCs via suppressing CD82 expression and stimulating CCL2 secretion and CCR2 expression, and the enhanced interaction of CCL2–CCR2 recruits more macrophages into the ectopic milieu in a paracrine manner, which further downregulates CD82 expression in the ectopic ESCs. Our study has demonstrated for the first time that the abnormal lower CD82 expression in ESCs induced by TCDD and estrogen may be an important molecular basis of endometriosis pathogenesis through enhancing the CCL2 secretion and CCR2 expression and the invasion of ESCs via MAPK and integrinβ1 signal pathway.

Restricted access

Xin-wei Chen, Ye-hong Li, Meng-jun Zhang, Zhou Chen, Dian-shan Ke, Ying Xue and Jian-ming Hou

Lactoferrin (LF) is an iron-binding glycoprotein that plays an important role in promoting bone formation and inhibiting bone resorption; however, its effects on senile osteoporosis remain unknown. This study aimed to investigate the effects and mechanism of LF intervention using a senile osteoporosis model (SAMP6 mice) and senescent osteoblasts. Micro-CT and hematoxylin and eosin staining demonstrated that the intragastric administration (2 g/kg/day) of LF could improve the bone mass and microstructure of SAMP6 mice. Furthermore, LF treatment improved bone metabolism and increased insulin-like growth factor 1 (Igf1) mRNA expression and activated phosphorylation status of AKT. Using osteoblasts passaged for ten generations as an in vitro senescence model, various markers associated with osteoblast formation and differentiation, as well as related indices of oxidative stress were analyzed. Our results revealed that after multiple generations, osteoblasts entered senescence, in conjunction with increased oxidative stress damage, reduced bone metabolism and enhanced expression of aging-related markers. While inhibiting oxidative stress, LF improved osteoblast proliferation by promoting the expression of osteogenesis markers, including alkaline phosphatase (ALP) activity, Igf1, bone gla protein (Bglap) and osteoprotegerin/receptor activator of nuclear factor-kB ligand (Opg/Rankl) mRNA and delayed senescence by decreasing the level of p16 and p21 expression. RNAI-mediated downregulation of IGF1 attenuated the effect of LF on osteogenesis. Therefore, the findings of the present study indicate that LF may promote osteogenesis via IGF1 signaling, thereby preventing senile osteoporosis.