Search Results

You are looking at 1 - 4 of 4 items for

  • Author: J Kim x
Clear All Modify Search
Free access

J Kim, L Jia, M R Stallcup and G A Coetzee

Androgen-independent prostate cancer is a lethal form of the disease that is marked by metastasis and rapid proliferation in its final stages. As no effective therapy for this aggressive tumor currently exists, it is imperative to elucidate and target the mechanisms involved in the progression to androgen independence. Accumulating evidence indicates that aberrant activation of androgen receptor (AR) via signal transduction pathways, AR gene mutation and/or amplification, and/or coregulator alterations may contribute to the progression of prostate cancer. In the present study, the effects of protein kinase A (PKA) signaling and its downstream factors on AR activity at the prostate-specific antigen (PSA) gene were tested. Activation of PKA by forskolin resulted in enhanced androgen-induced expression of the PSA gene, an effect that was blocked by the AR antagonist, bicalutamide. Interestingly, when either p300 or CBP was overexpressed, PKA activation was sufficient to stimulate PSA promoter-driven transcription in the absence of androgen, which was not inhibited by bicalutamide. PKA activation did not significantly alter AR protein levels but significantly increased the phosphorylated form of its downstream effector, cAMP responsive element-binding protein (CREB) in the presence of androgen. Furthermore, chromatin immunoprecipitation showed that the combination of androgen and forskolin increased phosphorylated CREB occupancy, which was accompanied by histone acetylation, at the putative cAMP responsive element located in the 5′ upstream regulatory region of the PSA gene. Remarkably, mammalian two-hybrid assay indicated that p300/CBP may bridge the interaction between AR and CREB, suggesting a novel enhanceosomal cooperation. These results demonstrate an intriguing interplay between a signal transduction pathway, coactivator overexpression and AR signaling as a possible combined mechanism of progression to androgen-independent prostate cancer.

Restricted access

D S Kim, J H Yoon, S K Ahn, K E Kim, R H Seong, S H Hong, K Kim, K Ryu and S D Park

ABSTRACT

Our previous studies demonstrated that at least two DNA regions with upstream limits between positions −223 to −190 and positions −151 to −135 of the human TSH gene are important for transcriptional regulation by TRH in GH3 rat pituitary cells. The proximal region (−151 to −135 bp) including the cAMP-responsive element (CRE) was required for the induction of the TSH gene by TRH, while the distal region (−223 to −190 bp) containing an element similar to the binding site for the pituitary-specific transcription factor, Pit-1, was necessary to amplify the effects of TRH. To determine whether a pituitary-specific nuclear protein, in addition to the CRE-binding protein, is involved in the molecular mechanism of TRH regulation, a gel retardation assay and Southwestern blot analysis were performed on the distal region with GH3 cell nuclear extracts. GH3 extracts generated a distinct DNA—protein complex that was effectively eliminated in the presence of excess unlabelled DNA fragment, and TRH treatment increased the affinity of protein binding remarkably. Excess Pit-1 DNA-binding sequence from the rat prolactin gene inhibited formation of the complex, but mutation of the Pit-1 consensus sequence in the distal region did not eliminate the complex. In addition, Southwestern experiments showed that a 33 kDa nuclear protein present in GH3 cells bound to this region and its binding affinity was increased slightly 2 h after TRH treatment, with the maximal increase (fivefold) at 3 h, which was similar to the results when using gel retardation. Phosphatase treatment of nuclear protein also resulted in a loss of binding affinity. Taken together, these data indicate that the interaction of a pituitary-specific nuclear protein, identical or closely related to Pit-1, with the distal region may be involved in the TRH stimulation of human TSH gene expression.

Free access

J H Li, F Sicard, M A Salam, M Baek, J LePrince, H Vaudry, K Kim, H B Kwon and J Y Seong

Neurotensin (NT) is a tridecapeptide that functions as a neurotransmitter and neuromodulator in the nervous system. To date, three different types of NT receptor (NTR), NTR1, NTR2 and NTR3, have been identified only in mammalian species. In the present study we isolated the cDNAs for an NTR1 and a novel NTR in the bullfrog brain, designated bfNTR1 and bfNTR4 respectively. bfNTR1 and bfNTR4 encode 422- and 399-amino acid residue proteins respectively. bfNTR1 has a 64% amino acid identity with mammalian NTR1, and 34–37% identity with mammalian NTR2. bfNTR4 exhibits 43% and 45–47% identity with mammalian NTR1 and NTR2 respectively. Both receptors are mainly expressed in the brain and pituitary. bfNTR1 triggers both CRE-luc, a protein kinase A (PKA)-specific reporter, and c-fos-luc, a PKC-specific reporter, activities, indicating that bfNTR1 can activate PKA- and PKC-linked signaling pathways. However, bfNTR4 appears to be preferentially coupled to the PKA-linked pathway as it induces a higher CRE-luc activity than c-fos-luc activity. bfNTRs exhibit different pharmacological properties as compared with mammalian NTRs. Mammalian NTR1 but not NTR2 responds to NT, whereas both bfNTR1 and bfNTR4 show a high sensitivity to NT. SR 48692 and SR 142948A, antagonists for mammalian NTR1 but agonists for mammalian NTR2, function as antagonists for both bfNTR1 and bfNTR4. In conclusion, this report provides the first molecular, pharmacological and functional characterization of two NTRs in a non-mammalian vertebrate. These data should help to elucidate the phylogenetic history of the G protein-coupled NTRs in the vertebrate lineage as well as the structural features that determine their pharmacological properties.

Open access

H H Farman, J Wu, K L Gustafsson, S H Windahl, S H Kim, J A Katzenellenbogen, C Ohlsson and M K Lagerquist

Estradiol (E2) signaling via estrogen receptor alpha (ERα) is important for the male skeleton as demonstrated by ERα inactivation in both mice and man. ERα mediates estrogenic effects not only by translocating to the nucleus and affecting gene transcription but also by extra-nuclear actions e.g., triggering cytoplasmic signaling cascades. ERα contains various domains, and the role of activation function 1 (ERαAF-1) is known to be tissue specific. The aim of this study was to determine the importance of extra-nuclear estrogen effects for the skeleton in males and to determine the role of ERαAF-1 for mediating these effects. Five-month-old male wild-type (WT) and ERαAF-1-inactivated (ERαAF-10) mice were orchidectomized and treated with equimolar doses of 17β-estradiol (E2) or an estrogen dendrimer conjugate (EDC), which is incapable of entering the nucleus and thereby only initiates extra-nuclear ER actions or their corresponding vehicles for 3.5 weeks. As expected, E2 treatment increased cortical thickness and trabecular bone volume per total volume (BV/TV) in WT males. EDC treatment increased cortical thickness in WT males, whereas no effect was detected in trabecular bone. In ERαAF-10 males, E2 treatment increased cortical thickness, but did not affect trabecular bone. Interestingly, the effect of EDC on cortical bone was abolished in ERαAF-10 mice. In conclusion, extra-nuclear estrogen signaling affects cortical bone mass in males, and this effect is dependent on a functional ERαAF-1. Increased knowledge regarding estrogen signaling mechanisms in the regulation of the male skeleton may aid the development of new treatment options for male osteoporosis.