Search Results

You are looking at 1 - 3 of 3 items for

  • Author: H Cao x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

H Cao, Z M Lei, and Ch V Rao

ABSTRACT

The biosynthesis of human chorionic gonadotrophin (hCG) is a hallmark endocrine function of human choriocarcinoma cells. The present study investigated the consequences of greatly diminishing this synthesis in JAR cells by stably transfecting them with pRSV-antisense hCG-α cDNA expression vector. The vector directs the synthesis of antisense hCG-α subunit mRNA which would then bind to sense hCG-α subunit mRNA, thus blocking its translation and consequently dimer hCG protein synthesis.

The transfection with pRSV-antisense hCG-α cDNA resulted in a dramatic decrease in hCG secretion as compared with untransfected parental cells or those transfected with an empty vector used for the selection of clones. The decreased secretion was due to a decreased synthesis which in turn was due to a fall in steady-state hCG-α and -β subunit mRNA levels. The decrease of hCG-β subunit transcripts was unexpected and it was not due to contamination of antisense hCG-α cDNA construct with hCG-β sequence. The transcription of hCG-α and -β subunit genes was not altered in transfected cells suggesting that increased degradation was responsible for decreased steadystate hCG subunit mRNA levels. Despite the decreased hCG levels, the transfected cells maintained normal hCG receptor levels, responded to epidermal growth factor stimulation of hCG synthesis and secretion and grew at the same rate as the control parental cells and those transfected with an empty vector.

Free access

WM Cao, K Murao, H Imachi, C Hiramine, H Abe, X Yu, H Dobashi, NC Wong, J Takahara, and T Ishida

The thymus contains many apoptotic cells that arise from the process of positive and negative selection. Both thymic macrophages and thymic nurse cells/nursing thymic epithelial cells (nursing TECs), non-professional phagocytes, recognize and ingest apoptotic cells without inflammation or tissue damage. Previously we reported that human scavenger receptor class B (SR-B1) is involved in recognition of apoptotic thymocytes by nursing TECs. In this study, we examined the expression and role of a phosphatidylserine receptor (PSR). This receptor is believed to participate in the clearance of apoptotic cells. PSR was strongly expressed in nursing TECs. Transforming growth factor-beta augmented the expression of PSR leading to enhanced binding of apoptotic cells to nursing TECs. In nursing TECs, suppressed expression of human SR-B1 with anti-PSR antibody decreased binding of apoptotic thymocytes to nursing TECs. Our results suggest that both PSR and SR-B1 are expressed in nursing TECs and these receptors appear to play a major role in the clearance of apoptotic cells from the thymus.

Free access

H Namihira, M Sato, K Murao, WM Cao, S Matsubara, H Imachi, M Niimi, H Dobashi, NC Wong, and T Ishida

Menin is a protein encoded by the gene mutated in multiple endocrine neoplasia type 1 (MEN1) characterized by multiple endocrine tumors of the parathyroid glands, pancreatic islets and the anterior pituitary, especially prolactinoma. In this study, we examined the effects of menin on human prolactin (hPRL) expression. In rat pituitary GH3 cells stably expressing menin, both PRL gene expression/secretion and thymidine incorporation into DNA were inhibited as compared with mock-transfected cells. The transcriptional activity of PRL promoter in GH3 cells co-transfected with menin was significantly decreased. A deletion mutation (569 delC), which we identified in a Japanese MEN1 family, was introduced into menin. When GH3 cells were transfected with a mutant menin expression vector, inhibition of hPRL promoter activity was partially reversed. These observations suggest that menin inhibits hPRL promoter activity and cell proliferation, raising the possibility that menin might play an important role in the tumorigenesis of prolactinoma.