Search Results

You are looking at 1 - 7 of 7 items for

  • Author: H Ando x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

M Higa, T Kitahashi, Y Sasaki, H Okada, and H Ando

Two types of genes encode salmon gonadotropin-releasing hormone (sGnRH), which is thought to act on both sexual maturation and reproductive behavior, in salmonids. We characterized the two sGnRH genes (sGnRH-I and -II) and their upstream regions in masu salmon, Oncorhynchus masou, since such information is a prerequisite for molecular approaches to salmon reproduction. The two genes have similar exon-intron structures composed of four exons and three introns. Sequence analyses of the two genes showed that coding regions are highly conserved, but upstream regions are distinctively divergent. In the upstream regions, only the sGnRH-II gene has a large palindromic sequence, which has been proposed to be involved in control of transcription via estrogen receptors. In contrast, the sGnRH-I gene is missing the large palindromic sequence, but has three distinct palindromes in the upstream region. These results may suggest divergent transcription regulatory mechanisms between the two sGnRH genes in masu salmon. The differences in the upstream regions of sGnRH genes in Atlantic salmon (Salmo salar), sockeye salmon (Oncorhynchus nerka) and masu salmon are discussed with respect to the evolution of sGnRH genes in salmonid fish.

Restricted access

S Hiraoka, H Ando, M Ban, H Ueda, and A Urano

ABSTRACT

We analyzed changes in the hypothalamic levels of vasotocin (VT) and isotocin (IT) mRNA in chum salmon during spawning migration to the Ishikari river. The fish were caught at Atsuta, a fisherman's village facing the Ishikari bay, and at Chitose, an upstream branch of the Ishikari river. The former are referred to as sea water (SW) fish, and the latter as freshwater (FW) fish. The levels of VT and IT mRNA in the forebrains were determined by quantitative Northern blot analysis using single-stranded DNA with the same mRNA sequences as the standards. Levels of VT mRNA were higher in the FW males than the FW females, although no such difference was seen in the SW fish. Changes in the levels of VT mRNA were markedly different in males and females. In the males, no significant differences were seen in the levels of VT-I and VT-II mRNA between the SW and FW fish. However, in the females, the levels of VT mRNA in the FW fish were significantly lower than those in the SW fish. Changes in the levels of IT-I and IT-II mRNA were essentially similar in the males and females. These results suggest that the control of VT gene expression is different in males and females during spawning migration, although the neuroendocrine mechanism is not known.

Free access

K Ando, S Shioda, H Handa, and K Kataoka

The LIM homeodomain protein Islet-1 (Isl1), one of the earliest markers for motor neuron differentiation, is also expressed in all classes of islet cells in the pancreas. Isl1 is known to bind and regulate the promoters of the insulin, glucagon and somatostatin genes. In this study, we describe isolation of a novel isl1 cDNA species from the mouse islet beta cell line betaTC6, which arose from the utilization of an alternative splicing acceptor site in the fifth exon. This shorter cDNA encodes an Isl1 isoform (Isl1-beta) lacking the carboxy-terminal 23 amino acids of the previously reported product Isl1-alpha. Although the level of isl1-beta mRNA is much lower than that of isl1-alpha, isl1-beta is preferentially expressed in murine insulinoma cell lines but not in glucagonoma cell line. Upon transient transfection, both Isl1-alpha and Isl1-beta accumulate in the nuclei of murine insulinoma cells. We found that Isl1-beta is a relatively more potent transcriptional activator of the insulin promoter than Isl1-alpha and that the Isl1-alpha isoform undergoes phosphorylation. Therefore, the transcriptional activity of Isl1 is potentially regulated by the alternative splicing of its mRNA and by phosphorylation.

Free access

S Taniyama, T Kitahashi, H Ando, M Ban, H Ueda, and A Urano

Changes in the levels of pituitary mRNAs encoding GH, prolactin (PRL) and somatolactin (SL) were determined in pre-spawning chum salmon (Oncorhynchus keta) caught at a few key points along their homing pathway in 1994 and 1995. Furthermore, we analyzed relationships between expression of pituitary-specific POU homeodomain transcription factor (Pit-1/GHF-1) and GH/PRL/SL family genes. In 1994, seawater (SW) fish and matured fresh-water (FW) fish were sequentially captured at two points along their homing pathway, the coast and the hatchery. In addition to these two points, maturing FW fish were captured at the intermediate of the two points in 1995. The levels of hormonal mRNAs were determined by a quantitative dot blot analysis using single-stranded sense DNA as the standard. Relative levels of Pit-1/GHF-1 mRNAs were estimated by Northern blot analysis. In 1994, the levels of GH/PRL/SL family mRNAs except for PRL mRNA in the male FW fish were 1.8-4 times higher than those in the SW fish. In 1995, the level of PRL mRNA was somewhat sharply elevated in the maturing FW fish soon after entry into the FW environment, while that of SL mRNA was gradually increased during upstream migration from the coast to the hatchery. The levels of 3 kb Pit-1/GHF-1 mRNA in the FW fish were higher than those in the SW fish in both 1994 and 1995. The present results indicate that expression of genes for the GH/PRL/SL family and Pit-1/GHF-1 is coincidentally enhanced in homing chum salmon. Moreover, the present study suggests that expression of the SL gene is elevated with sexual maturation, whereas that of PRL gene is elevated with osmotic change during the final stages of spawning migration.

Restricted access

T. Noce, H. Ando, T. Ueda, K. Kubokawa, T. Higashinakagawa, and S. Ishii

ABSTRACT

A cDNA expression library was constructed from poly(A)+ RNA of broiler chicken adenohypophyses using λ gt11 as a vector. After screening with a rabbit antiserum against chicken LH, a cDNA clone (L12) containing a 436 bp insert was obtained. Using a subclone of L12 in pUC19 (pL12) as the hybridization probe, another cDNA clone (LF127) with a 533 bp insert was isolated. The LF127 contained the full-length cDNA encoding the putative chicken LH-β subunit precursor molecule. Hybridization of the pL12 cDNA insert to adenohypophysial RNA showed that chicken and Japanese quail adenohypophyses contained RNA species of about 0·8 and 1·0 kb respectively. The amount of this RNA species was ten times higher in adult male quails kept under long days at room temperature than in those kept under short days at 7 °C. In-situ hybridization experiments showed the exclusive distribution of the signal in the LH cells of the adenohypophysis. The similarity of the nucleotide sequence of the apoprotein-coding region of LH-β cDNA of the chicken to that of mammals is lower than that among mammals. The deduced amino acid sequence of the chicken LH-β subunit supports the hypothesis that the number of proline residues increases in the LH-β subunit the closer phylogenetically the vertebrate is to mammals.

Free access

K Kataoka, S Shioda, K Ando, K Sakagami, H Handa, and K Yasuda

A basic-leucine zipper transcription factor, MafA, was recently identified as one of the most important transactivators of insulin gene expression. This protein controls the glucose-regulated and pancreatic beta-cell-specific expression of the insulin gene through a cis-regulatory element called RIPE3b/MARE (Maf-recognition element). Here, we show that MafA expression is restricted to beta-cells of pancreatic islets in vivo and in insulinoma cell lines. We also demonstrate that c-Maf, another member of the Maf family of transcription factors, is expressed in islet alpha-cells and in a glucagonoma cell line (alphaTC1), but not in gamma- and delta-cells. An insulinoma cell line, betaTC6, also expressed c-Maf, albeit at a low level. Chromatin immunoprecipitation assays demonstrated that Maf proteins associate with insulin and glucagon promoters in beta- and alpha-cell lines, respectively. c-Maf protein stimulated glucagon promoter activity in a transient luciferase assay, and activation of the glucagon promoter by c-Maf was more efficient than by the other alpha-cell-enriched transcription factors, Cdx2, Pax6, and Isl-1. Furthermore, inhibition of c-Maf expression in alphaTC1 cells by specific short hairpin RNA resulted in marked reduction of the glucagon promoter activity. Thus, c-Maf and MafA are differentially expressed in alpha- and beta-cells where they regulate glucagon and insulin gene expression, respectively.

Free access

T Sakamoto, M Amano, S Hyodo, S Moriyama, A Takahashi, H Kawauchi, and M Ando

Prolactin (PRL)-releasing peptide (PrRP) is a strong candidate stimulator of pituitary PRL transcription and secretion in teleosts. However, the role in control of extrapituitary PRL expression is unclear even in mammals. To study the possible presence of PrRP–PRL axes not only in the brain-pituitary but also in peripheral organs, the expression patterns of PrRP, PRL and growth hormone (GH) were characterized in amphibious euryhaline mudskippers (Periophthalmus modestus). PrRP mRNA is abundantly expressed not only in the brain but also in the liver, gut and ovary, while less abundant expression was also detected in the skin and kidney. Corresponding to the distribution of PrRP mRNA, PRL mRNA was also detectable in these organs. During adaptation to different environments, the changes in mRNA levels of PrRP paralleled those in PRL in the brain-pituitary, liver and gut in an organ-specific manner. Brain PrRP mRNA and the pituitary PRL mRNA increased under freshwater and terrestrial conditions (P<0.05); expression of PrRP and PRL in the gut of freshwater fish was higher (P<0.05) than those in sea-water fish although there were no changes in fish kept out of water; no significant change was seen in the liver. Expressions of GH were not correlated with PrRP. In the gut, PrRP and PRL appear to be co-localized in the mucosal layer, especially in the mucous cells. Thus, PrRP may also be a local modulator of extrapituitary PRL expression and the PrRP–PRL axes in various organs may play an organ-specific role during environmental adaptation.