Search Results

You are looking at 1 - 2 of 2 items for

  • Author: G J M Martens x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

D Gröneveld, E R M Eckhardt, A J M Coenen, G J M Martens, P H M Balm, and S E Wendelaar Bonga


Melanin-concentrating hormone (MCH) is a neuropeptide involved in background adaptation in teleost fish, and in multiple regulatory functions in mammals and fish. To study the expression of the MCH preprohormone (ppMCH) in teleosts, we first cloned a hypothalamic cDNA encoding the complete ppMCH of tilapia (Oreochromis mossambicus), and a cRNA probe derived from a 270 bp ppMCH cDNA fragment was used for the expression studies. The level of ppMCH mRNA expression in tilapia hypothalamus, measured by dot blot analysis, was significantly higher in fish adapted to a white background than in black-adapted animals, which is in accordance with the reported MCH plasma and tissue concentrations in fish. Northern blot analysis not only revealed a strong ppMCH mRNA signal in the hypothalamus, but also the presence of ppMCH mRNA in the neurointermediate lobe (NIL) of the pituitary. In situ hybridization and immunocytochemistry showed that ppMCH mRNA as well as MCH immunoreactivity are located in perikarya of two hypothalamic regions, namely in the nucleus lateralis tuberis (NLT) and the nucleus recessus lateralis (NRL). Quantitative analysis by dot blot hybridization revealed about eight times more ppMCH mRNA in the NLT than in the NRL and NIL of mature tilapias. ppMCH mRNA in the NIL could be localized to cell bodies of the neurohypophysis, which were also MCH immunoreactive.

Free access

G A Martens, E Motté, G Kramer, G Stangé, L W Gaarn, K Hellemans, J H Nielsen, J M Aerts, Z Ling, and D Pipeleers

Neonatal β cells are considered developmentally immature and hence less glucose responsive. To study the acquisition of mature glucose responsiveness, we compared glucose-regulated redox state, insulin synthesis, and secretion of β cells purified from neonatal or 10-week-old rats with their transcriptomes and proteomes measured by oligonucleotide and LC-MS/MS profiling. Lower glucose responsiveness of neonatal β cells was explained by two distinct properties: higher activity at low glucose and lower activity at high glucose. Basal hyperactivity was associated with higher NAD(P)H, a higher fraction of neonatal β cells actively incorporating 3H-tyrosine, and persistently increased insulin secretion below 5 mM glucose. Neonatal β cells lacked the steep glucose-responsive NAD(P)H rise between 5 and 10 mM glucose characteristic for adult β cells and accumulated less NAD(P)H at high glucose. They had twofold lower expression of malate/aspartate-NADH shuttle and most glycolytic enzymes. Genome-wide profiling situated neonatal β cells at a developmental crossroad: they showed advanced endocrine differentiation when specifically analyzed for their mRNA/protein level of classical neuroendocrine markers. On the other hand, discrete neonatal β cell subpopulations still expressed mRNAs/proteins typical for developing/proliferating tissues. One example, delta-like 1 homolog (DLK1) was used to investigate whether neonatal β cells with basal hyperactivity corresponded to a more immature subset with high DLK1, but no association was found. In conclusion, the current study supports the importance of glycolytic NADH-shuttling in stimulus function coupling, presents basal hyperactivity as novel property of neonatal β cells, and provides potential markers to recognize intercellular developmental differences in the endocrine pancreas.