Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Feng Liu x
Clear All Modify Search
Full access

Li Hu, Fengli He, Meifeng Huang, Meihua Peng, Zhiguang Zhou, Feng Liu and Yan-Shan Dai

Nuclear factors of activated T cells (NFAT) c3 have a prominent role in the regulation of proinflammatory factors in immune cells. The classically activated M1 macrophages are key players in the initiation and maintenance of adipose tissue (AT) inflammation. The role of NFATc3 in obesity and AT inflammation is unknown. We set out to determine how deficiency of NFATc3 effected macrophage polarization, inflammation and insulin resistance in visceral AT of high-fat diet (HFD)-fed mice. Nfatc3−/− and WT mice were fed a HFD for 8–17 weeks. Epididymal white AT (eWAT) F4/80(+) cells were characterized by fluorescence-activated cell sorting and quantitative RT-PCR. Results showed that Nfatc3−/− mice developed HFD-induced obesity similar to WT mice, but insulin sensitivity and glucose tolerance were improved, and liver fat accumulation was reduced in Nfatc3−/− mice compared to WT control mice. Moreover, M1 macrophage content and proinflammatory factors were reduced, whereas the alternatively activated M2 macrophage content was increased in eWAT of HFD-fed Nfatc3−/− mice compared to that of WT mice. In addition, eWAT insulin signaling was improved in HFD-fed Nfatc3−/− mice. Importantly, after bone-marrow-derived macrophages had been isolated from Nfatc3−/− mice and cultured in vitro, treatment of these cells with interferon-γ and lipopolysaccharide resulted in reduction of M1 inflammatory markers, suggesting that NFATc3 promoted M1 polarization by a cell-autonomous mechanism. The results demonstrated that NFATc3 played an important role in M1 macrophage polarization, AT inflammation and insulin resistance in response to obesity through transcriptional activation of proinflammatory genes.

Full access

Gang Liu, Feng Luo, Qiang Song, Limin Wu, Yongxiu Qiu, Hongjuan Shi, Deshou Wang and Linyan Zhou

In vitro studies have indicated that the maturation-inducing hormone 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DP, DHP), probably through nuclear progestin receptor (Pgr), might be involved in the proliferation of spermatogonial cells and the initiation of meiosis in several fish species. However, further in vivo evidence is required to elucidate the role of DHP in spermatogenesis during sexual differentiation in teleosts. In this study, we cloned pgr and analyzed its expression in Nile tilapia (Oreochromis niloticus) and treated XY fish with RU486 (a synthetic Pgr antagonist) from 5 days after hatching (dah) to determine the role of DHP in spermatogenesis. Sequence and phylogenetic analyses revealed that the Pgr identified in tilapia is a genuine Pgr. Pgr was found to be expressed in the Sertoli cells surrounding spermatogonia and spermatids in the testis of tilapia. Real-time PCR analysis revealed that the expression of pgr in the testis was significantly upregulated from 10 dah, further increased at 50 dah, and persisted until adulthood in fish. In the testis of RU486-treated fish, the transcript levels of germ cell markers and a meiotic marker were substantially reduced. However, the expression of markers in Sertoli cells remained unchanged. Moreover, the production of 11-ketotestosterone and the expression of genes encoding various steroidogenic enzymes were also not altered. In contrast, the expression of cyp17a2, encoding one of the critical steroidogenic enzymes involved in DHP biosynthesis, declined significantly, possibly indicating the inhibition of DHP production by RU486. RU486 treatment given for 2 months did not affect spermatogenesis; however, treatment given for more than 3 months resulted in a decrease in spermatogonial cell numbers and depletion of later-phase spermatogenic cells. Simultaneous excessive DHP supplementation restored spermatogenesis in RU486-treated XY fish. Taken together, our data further indicated that DHP, possibly through Pgr, might be essential for spermatogonial cell proliferation and spermatogenesis in fish.

Full access

Liping Luo, Wanxiang Jiang, Hui Liu, Jicheng Bu, Ping Tang, Chongyangzi Du, Zhipeng Xu, Hairong Luo, Bilian Liu, Bo Xiao, Zhiguang Zhou and Feng Liu

The growth factor receptor bound protein GRB10 is an imprinted gene product and a key negative regulator of the insulin, IGF1 and mTORC1 signaling pathways. GRB10 is highly expressed in mouse fetal liver but almost completely silenced in adult mice, suggesting a potential detrimental role of this protein in adult liver function. Here we show that the Grb10 gene could be reactivated in adult mouse liver by acute endoplasmic reticulum stress (ER stress) such as tunicamycin or a short-term high-fat diet (HFD) challenge, concurrently with increased unfolded protein response (UPR) and hepatosteatosis. Lipogenic gene expression and acute ER stress-induced hepatosteatosis were significantly suppressed in the liver of the liver-specific GRB10 knockout mice, uncovering a key role of Grb10 reactivation in acute ER stress-induced hepatic lipid dysregulation. Mechanically, acute ER stress induces Grb10 reactivation via an ATF4-mediated increase in Grb10 gene transcription. Our study demonstrates for the first time that the silenced Grb10 gene can be reactivated by acute ER stress and its reactivation plays an important role in the early development of hepatic steatosis.

Full access

Feng Wang, Xianfeng Zhang, Jiqiu Wang, Maopei Chen, Nengguang Fan, Qinyun Ma, Ruixin Liu, Rui Wang, Xiaoying Li, Mingyao Liu and Guang Ning

The circadian clock plays an important role in the liver by regulating the major aspects of energy metabolism. Currently, it is assumed that the circadian clock regulates metabolism mostly by regulating the expression of liver enzymes at the transcriptional level, but the underlying mechanism is not well understood. In this study, we showed that L gr4 homozygous mutant (L gr4 m/m) mice showed alteration in the rhythms of the respiratory exchange ratio. We further detected impaired plasma triglyceride rhythms in L gr4 m/m mice. Although no significant changes in plasma cholesterol rhythms were observed in the L gr 4 m/m mice, their cholesterol levels were obviously lower. This phenotype was further confirmed in the context of ob/ob mice, in which lack of LGR4 dampened circadian rhythms of triglyceride. We next demonstrated that Lgr 4 expression exhibited circadian rhythms in the liver tissue and primary hepatocytes in mice, but we did not detect changes in the expression levels or circadian rhythms of classic clock genes, such as C lock, Bmal1 (Arntl), P ers, Rev-erbs, and C rys, in L gr 4 m/m mice compared with their littermates. Among the genes related to the lipid metabolism, we found that the diurnal expression pattern of the M ttp gene, which plays an important role in the regulation of plasma lipid levels, was impaired in L gr 4 m/m mice and primary L gr 4 m/m hepatocytes. Taken together, our results demonstrate that LGR4 plays an important role in the regulation of plasma lipid rhythms, partially through regulating the expression of microsomal triglyceride transfer protein. These data provide a possible link between the peripheral circadian clock and lipid metabolism.

Full access

Rui Wang, Jie Hong, Ruixin Liu, Maopei Chen, Min Xu, Wiqiong Gu, Yifei Zhang, Qinyun Ma, Feng Wang, Juan Shi, Jiqiu Wang, Weiqing Wang and Guang Ning

WNT/β-catenin signalling is involved in regulating adipogenesis, and its dysregulation occurs in obesity. Secreted frizzled-related protein 5 (SFRP5) is a WNT protein inhibitor; however, its role in adipogenesis and obesity is controversial. In this study, we observed that SFRP5 mRNA levels were increased in the fat tissues of obese humans and mice. Sfrp5 expression was gradually induced during differentiation of white and brown adipocytes and was highly increased in mature adipocytes rather than preadipocytes. However, the effects of the exogenous overexpression of Sfrp5 indicated that Sfrp5 may not directly regulate adipogenesis in vitro under the conditions studied. Moreover, SFRP5 did not inhibit the canonical WNT/β-catenin signalling pathway in preadipocytes. Subsequently, we measured the levels of circulating SFRP5 in obese patients and non-obese subjects using ELISA and did not find any significant difference. Collectively, these findings indicate that Sfrp5 represents a candidate for a mature adipocyte marker gene. Our data provide new evidence concerning the role of SFRP5 in adipogenesis of white and brown adipocytes and obesity.

Open access

Kamran Ullah, Tanzil Ur Rahman, Hai-Tao Pan, Meng-Xi Guo, Xin-Yan Dong, Juan Liu, Lu-Yang Jin, Yi Cheng, Zhang-Hong Ke, Jun Ren, Xian-Hua Lin, Xiao-Xiao Qiu, Ting-Ting Wang, He-Feng Huang and Jian-Zhong Sheng

Previous studies have shown that increasing estradiol concentrations had a toxic effect on the embryo and were deleterious to embryo adhesion. In this study, we evaluated the physiological impact of estradiol concentrations on endometrial cells to reveal that serum estradiol levels probably targeted the endometrium in controlled ovarian hyperstimulation (COH) protocols. An attachment model of human choriocarcinoma (JAr) cell spheroids to receptive-phase endometrial epithelial cells and Ishikawa cells treated with different estradiol (10−9 M or 10−7 M) concentrations was developed. Differentially expressed protein profiling of the Ishikawa cells was performed by proteomic analysis. Estradiol at 10−7 M demonstrated a high attachment rate of JAr spheroids to the endometrial cell monolayers. Using iTRAQ coupled with LC–MS/MS, we identified 45 differentially expressed proteins containing 43 significantly upregulated and 2 downregulated proteins in Ishikawa cells treated with 10−7 M estradiol. Differential expression of C3, plasminogen and kininogen-1 by Western blot confirmed the proteomic results. C3, plasminogen and kininogen-1 localization in human receptive endometrial luminal epithelium highlighted the key proteins as possible targets for endometrial receptivity and interception. Ingenuity pathway analysis of differentially expressed proteins exhibited a variety of signaling pathways, including LXR/RXR activation pathway and acute-phase response signaling and upstream regulators (TNF, IL6, Hmgn3 and miR-140-3p) associated with endometrial receptivity. The observed estrogenic effect on differential proteome dynamics in Ishikawa cells indicates that the human endometrium is the probable target for serum estradiol levels in COH cycles. The findings are also important for future functional studies with the identified proteins that may influence embryo implantation.