Search Results

You are looking at 1 - 4 of 4 items for

  • Author: F. Chen x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

F. Chen and D. Puett

ABSTRACT

The heterodimer, human chorionic gonadotrophin (hCG), contains an a subunit that is common to the glycoprotein hormones and a hormone-specific β subunit. A comparison of all known β amino acid sequences shows that an aspartic acid at position 99 (with the numbering scheme for hCG-β) is one of the seven non-Cys invariant residues. Using site-directed mutagenesis we have replaced hCG-β Asp99 with Arg. Chinese hamster ovary cells, containing a stably integrated gene for bovine a subunit, were transiently transfected with plasmids containing wild-type and mutant hCG-β cDNAs. The Arg99 β mutant associated with the a subunit, but the resulting heterodimer failed to enhance intracellular cyclic AMP production in a gonadotrophin-responsive transformed murine Leydig cell line. Thus, a single amino acid residue replacement in this glycosylated heterodimer containing 237 amino acid residues is sufficient to abolish activity.

Free access

Kazutaka Nanba, Andrew X Chen, Adina F Turcu, and William E Rainey

The H295R adrenocortical cell line is widely used for molecular analysis of adrenal functions but is known to have only modest ACTH responsiveness. The lack of ACTH response was linked to a low expression of its receptor, melanocortin 2 receptor (MC2R). We hypothesized that increasing the MC2R accessory protein (MRAP), which is required to traffic MC2R from the endoplasmic reticulum to the cell surface, would increase ACTH responsiveness. Lentiviral particles containing human MRAP-open reading frame were generated and transduced in H295R cells. Using antibiotic resistance, 18 clones were isolated for characterization. The most ACTH-responsive steroidogenic clone, H295RA, was used for further experiments. Successful induction of MRAP and increased expression of MC2R in H295RA cells was confirmed by quantitative real-time RT-PCR and protein analysis. Treatment with ACTH significantly increased aldosterone, cortisol, and dehydroepiandrosterone production in H295RA cells. ACTH also significantly increased transcript levels for all of the steroidogenic enzymes required to produce aldosterone, cortisol, and dehydroepiandrosterone, as well as MC2R mRNA. Using liquid chromatography/tandem mass spectrometry, we further revealed that the main unconjugated steroids produced in H295RA cells were 11-deoxycortisol, cortisol, and androstenedione. Treatment of H295RA cells with ACTH also acutely increased cAMP production and cellular protein levels for total and phosphorylated steroidogenic acute regulatory protein. In summary, through genetic manipulation, we have developed an ACTH-responsive human adrenocortical cell line. The cell line will provide a powerful in vitro tool for molecular analysis of physiologic and pathologic conditions involving the hypothalamic–pituitary–adrenal axis.

Free access

Angela Delaney, Vasantha Padmanabhan, Geoffrey Rezvani, Weiping Chen, Patricia Forcinito, Crystal S F Cheung, Jeffrey Baron, and Julian C K Lui

Body size varies enormously among mammalian species. In small mammals, body growth is typically suppressed rapidly, within weeks, whereas in large mammals, growth is suppressed slowly, over years, allowing for a greater adult size. We recently reported evidence that body growth suppression in rodents is caused in part by a juvenile genetic program that occurs in multiple tissues simultaneously and involves the downregulation of a large set of growth-promoting genes. We hypothesized that this genetic program is conserved in large mammals but that its time course is evolutionarily modulated such that it plays out more slowly, allowing for more prolonged growth. Consistent with this hypothesis, using expression microarray analysis, we identified a set of genes that are downregulated with age in both juvenile sheep kidney and lung. This overlapping gene set was enriched for genes involved in cell proliferation and growth and showed striking similarity to a set of genes downregulated with age in multiple organs of the juvenile mouse and rat, indicating that the multiorgan juvenile genetic program previously described in rodents has been conserved in the 80 million years since sheep and rodents diverged in evolution. Using microarray and real-time PCR, we found that the pace of this program was most rapid in mice, more gradual in rats, and most gradual in sheep. These findings support the hypothesis that a growth-regulating genetic program is conserved among mammalian species but that its pace is modulated to allow more prolonged growth and therefore greater adult body size in larger mammals.

Open access

Rishel B Vohnoutka, Annapurna Kuppa, Yash Hegde, Yue Chen, Asmita Pant, Maurice E Tohme, Eun-Young (Karen) Choi, Sean M McCarty, Devika P Bagchi, Xiaomeng Du, Yanhua Chen, Vincent L Chen, Hiroyuki Mori, Lawrence F Bielak, Lillias H Maguire, Samuel K Handelman, Jonathan Z Sexton, Thomas L Saunders, Brian D Halligan, and Elizabeth K Speliotes

Human genome-wide association studies found single-nucleotide polymorphisms (SNPs) near LYPLAL1 (Lysophospholipase-like protein 1) that have sex-specific effects on fat distribution and metabolic traits. To determine whether altering LYPLAL1 affects obesity and metabolic disease, we created and characterized a mouse knockout (KO) of Lyplal1. We fed the experimental group of mice a high-fat, high-sucrose (HFHS) diet for 23 weeks, and the controls were fed regular chow diet. Here, we show that CRISPR-Cas9 whole-body Lyplal1 KO mice fed an HFHS diet showed sex-specific differences in weight gain and fat accumulation as compared to chow diet. Female, not male, KO mice weighed less than WT mice, had reduced body fat percentage, had white fat mass, and had adipocyte diameter not accounted for by changes in the metabolic rate. Female, but not male, KO mice had increased serum triglycerides, decreased aspartate, and decreased alanine aminotransferase. Lyplal1 KO mice of both sexes have reduced liver triglycerides and steatosis. These diet-specific effects resemble the effects of SNPs near LYPLAL1 in humans, suggesting that LYPLAL1 has an evolutionary conserved sex-specific effect on adiposity. This murine model can be used to study this novel gene-by-sex-by-diet interaction to elucidate the metabolic effects of LYPLAL1 on human obesity.