Search Results

You are looking at 1 - 5 of 5 items for

  • Author: F Pakdel x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

F Delaunay, F Pakdel, and Y Valotaire


In order to perform later studies on the transcriptional regulation of hormone-dependent genes in fish liver, we firstly examined the potential of trout liver nuclear extracts in a cell-free transcription system. As reporter genes, we used DNA sequences without G (G-free cassettes) under the control of three promoters derived from the 5′ flanking sequence of the Xenopus vitellogenin B1 gene; two of them were responsive to the oestrogen receptor (ER) through oestrogen responsive elements (ERE). Maximal transcriptional activity was obtained within a range of 40–130 μg protein per extract depending on the extract preparation. Transcription was maximal in reactions carried out at 25 °C.

Similar transcriptional activities for the three promoters were observed when transcription was performed in extracts from untreated male trout. In contrast, we observed a 4·5- to 6-fold increase in the transcription with ERE-containing promoters in comparison with that with the minimal promoter bearing only a TATA box when extracts from oestradiol-treated male trout were used. This effect was correlated with the increase in the nuclear ER concentration induced by in vivo hormonal treatment. This enhanced transcription was specifically inhibited by the addition of a 25- to 100-fold excess of ERE oligonucleotide competitor.

These data demonstrated, therefore, that transcription was ERE-dependent in this system and suggest strongly that it was mediated by the trout ER. Addition of oestradiol or the anti-oestrogens hydroxytamoxifen or ICI 164384 had no effect on the transcriptional activity of the two ERE-containing promoters, indicating that transcription was hormone-independent in trout liver nuclear extracts.

Restricted access

G Flouriot, F Pakdel, B Ducouret, and Y Valotaire


Rainbow trout hepatocyte primary culture was used to test the influence of some xenobiotics on the expression of two genes implicated in reproduction, those for the estrogen receptor (ER) and vitellogenin (Vg). We showed that chlordecone, nonylphenol, a polychlorobiphenol (PCB) mixture (Aroclor 1245) and lindane were able to induce ER and Vg mRNA accumulation. Antiestrogens, 4-hydroxytamoxifen and ICI 164,384, prevented the effects of the xenobiotics, indicating that the induction of gene expression is mediated by the ER. Among these four xenobiotics, only chlordecone and nonylphenol were able to displace the binding of [3H]estradiol to ER-enriched COS-1 extracts, and to activate an estrogen-dependent reporter gene (ERE-TK-CAT) cotransfected with an expression vector containing ER cDNA. The results suggest that chlordecone and nonylphenol are direct inducers of rainbow trout ER and Vg gene expression, whereas PCBs and lindane act through their hepatic metabolites. Moreover, pentachlorophenol acts as an antagonist of the induction by estradiol of rainbow trout ER and Vg gene expression.

Restricted access

F Petit, P Le Goff, JP Cravedi, Y Valotaire, and F Pakdel

A relation between the chemical structure of a xenobiotic and its steroidal action has not yet been clearly established. Thus, it is not possible to define the estrogenic potency of different xenobiotics. An assessment may be accomplished by the use of different bioassays. We have previously developed a yeast system highly and stably expressing rainbow trout estrogen receptor (rtER) in order to analyze the biological activity of the receptor. The recombinant yeast system appears to be a reliable, rapid and sensitive bioassay for the screening and determination of the direct interaction between ER and estrogenic compounds. This system was used in parallel with a more elaborate biological system, trout hepatocyte aggregate cultures, to examine the estrogenic potency of a wide spectrum of chemicals commonly found in the environment. In hepatocyte cultures, the vitellogenin gene whose expression is principally dependent upon estradiol was used as a biomarker. Moreover, competitive binding assays were performed to determine direct interaction between rtER and xenobiotics. In our study, 50% of the 49 chemical compounds tested exhibited estrogenic activity in the two bioassays: the herbicide diclofop-methyl; the fungicides biphenyl, dodemorph, and triadimefon; the insecticides lindane, methyl parathion, chlordecone, dieldrin, and endosulfan; polychlorinated biphenyl mixtures; the plasticizers or detergents alkylphenols and phthalates; and phytoestrogens. To investigate further biphenyl estrogenic activity, its principal metabolites were also tested in both bioassays. Among these estrogenic compounds, 70% were able to activate rtER in yeast and hepatocytes with variable induction levels according to the system. Nevertheless, 30% of these estrogenic compounds exhibited estrogenic activity in only one of the bioassays, suggesting the implication of metabolites or different pathways in the activation of gene transcription. This paper shows that it is important to combine in vivo bioassays with in vitro approaches to elucidate the mechanism of xenoestrogen actions.

Free access

A Menuet, Y Le Page, O Torres, L Kern, O Kah, and F Pakdel

We have previously cloned and characterized three estrogen receptors (ER) in the zebrafish (zfERalpha, zfERbeta1 and zfERbeta2). We have also shown that they are functional in vitro and exhibit a distinct expression pattern, although partially overlapping, in the brain of zebrafish. In this paper, we have shown that the hepatic expression of these zfER genes responds differently to estradiol (E2). In fact, a 48-h direct exposure of zebrafish to E2 resulted in a strong stimulation of zfERalpha gene expression while zfERbeta1 gene expression was markedly reduced and zfERbeta2 remained virtually unchanged. To establish the potential implication of each zfER in the E2 upregulation of the zfERalpha gene, the promoter region of this gene was isolated and characterized. Transfection experiments with promoter-luciferase reporter constructs together with different zfER expression vectors were carried out in different cell contexts. The data showed that in vivo E2 upregulation of the zfERalpha gene requires ERalpha itself and a conserved transcription unit sequence including at least an imperfect estrogen-responsive element (ERE) and an AP-1/ERE half site at the proximal transcription initiation site. Interestingly, although in the presence of E2 zfERalpha was the most potent at inducing the expression of its own gene, the effect of E2 mediated by zfERbeta2 represented 50% of the zfERalpha activity. In contrast, zfERbeta1 was unable to upregulate the zfERalpha gene whereas this receptor form was able to tightly bind E2 and activate a reporter plasmid containing a consensus ERE. Altogether, these results indicated that the two ERbeta forms recently characterized in teleost fish could have partially distinct and not redundant functions.

Restricted access

Y Le Dréan, G Lazennec, L Kern, D Saligaut, F Pakdel, and Y Valotaire


We previously reported that the expression of the rainbow trout estrogen receptor (rtER) gene is markedly increased by estradiol (E2). In this paper, we have used transient transfection assays with reporter plasmids expressing chloramphenicol acetyl transferase (CAT), linked to 5′ flanking regions of the rtER gene promoter, to identify cis-elements responsible for E2 inducibility. Deletion analysis localized an estrogen-responsive element (ERE), at position +242, with one mutation on the first base compared with the consensus sequence. This element confers estrogen responsiveness to CAT reporter linked to both the herpes simplex virus thymidine kinase promoter and the homologous rtER promoter. Moreover, using a 0·2 kb fragment of the rtER promoter encompassing the ERE and the rtER DNA binding domain obtained from a bacterial expression system, DNase I footprinting experiments demonstrated a specific protection covering 20 bp (+240/+260) containing the ERE sequence. Based on these studies, we believe that this ERE sequence, identified in the rtER gene promoter, may be a major cis-acting element involved in the regulation of the gene by estrogen.